Abstract

Flexible structures carrying moving subsystems are found in various engineering applications. Periodic passage of subsystems over a supporting structure can induce parametric resonance, causing vibration with ever-increasing amplitude in the structure. Instead of its engineering implications, parametric excitation of a structure with sequentially passing oscillators has not been well addressed. The dynamic stability in such a moving-oscillator problem, due to viscoelastic coupling between the supporting structure and moving oscillators, is different from that in a moving-mass problem. In this paper, parametric resonance of coupled structure-moving oscillator systems is thoroughly examined, and a new stability analysis method is proposed. In the development, a set of sequential state equations is first derived, leading to a model for structures carrying a sequence of moving oscillators. Through the introduction of a mapping matrix, a set of stability criteria on parametric resonance is then established. Being of analytical form, these criteria can accurately and efficiently predict the dynamic stability of a coupled structure-moving oscillator system. In addition, by the spectral radius of the mapping matrix, the global stability of a coupled system can be conveniently investigated in a parameter space. The system model and stability criteria are illustrated and validated in numerical examples.

References

1.
Yang
,
Y. B.
,
Yau
,
J. D.
, and
Hsu
,
L. C.
,
1997
, “
Vibration of Simple Beams Due to Trains Moving at High Speeds
,”
Eng. Struct.
,
19
(
11
), pp.
936
944
. 10.1016/S0141-0296(97)00001-1
2.
Wang
,
J. F.
,
Lin
,
C. C.
, and
Chen
,
B. L.
,
2003
, “
Vibration Suppression for High-Speed Railway Bridges Using Tuned Mass Dampers
,”
Int. J. Solids Struct.
,
40
(
2
), pp.
465
491
. 10.1016/S0020-7683(02)00589-9
3.
Lin
,
C. C.
,
Wang
,
J. F.
, and
Chen
,
B. L.
,
2005
, “
Train-Induced Vibration Control of High-Speed Railway Bridges Equipped With Multiple Tuned Mass Dampers
,”
J. Bridge Eng.
,
10
(
4
), pp.
398
414
. 10.1061/(ASCE)1084-0702(2005)10:4(398)
4.
Museros
,
P.
,
Moliner
,
E.
, and
Martínez-Rodrigo
,
M. D.
,
2013
, “
Free Vibrations of Simply-Supported Beam Bridges Under Moving Loads: Maximum Resonance, Cancellation and Resonant Vertical Acceleration
,”
J. Sound Vib.
,
332
(
2
), pp.
326
345
. 10.1016/j.jsv.2012.08.008
5.
Mao
,
L.
, and
Lu
,
Y.
,
2013
, “
Critical Speed and Resonance Criteria of Railway Bridge Response to Moving Trains
,”
J. Bridge Eng.
,
18
(
2
), pp.
131
141
. 10.1061/(ASCE)BE.1943-5592.0000336
6.
Doménech
,
A.
,
Martínez-Rodrigo
,
M. D.
,
Romero
,
A.
, and
Galvín
,
P.
,
2015
, “
Soil-Structure Interaction Effects on the Resonant Response of Railway Bridges Under High-Speed Traffic
,”
Int. J. Rail Transp.
,
3
(
4
), pp.
201
214
. 10.1080/23248378.2015.1076621
7.
Bolotin
,
V. V.
,
1964
,
The Dynamic Stability of Elastic Systems
,
Holden-Day
,
San Francisco
.
8.
Hsu
,
C. S.
,
1972
, “
Impulsive Parametric Excitation: Theory
,”
ASME J. Appl. Mech.
,
39
(
2
), pp.
551
558
. 10.1115/1.3422715
9.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1995
,
Nonlinear Oscillations
,
Wiley
,
New York
.
10.
Cartmell
,
M.
,
1990
,
Introduction to Linear, Parametric and Nonlinear Vibrations
,
Chapman and Hall
,
London
.
11.
Nelson
,
H. D.
, and
Conover
,
R. A.
,
1971
, “
Dynamic Stability of a Beam Carrying Moving Masses
,”
ASME J. Appl. Mech.
,
38
(
4
), pp.
1003
1006
. 10.1115/1.3408901
12.
Benedetti
,
G. A.
,
1974
, “
Dynamic Stability of a Beam Loaded by a Sequence of Moving Mass Particles
,”
ASME J. Appl. Mech.
,
41
(
4
), pp.
1069
1071
. 10.1115/1.3423435
13.
Mackertich
,
S.
,
2004
, “
Dynamic Stability of a Beam Excited by a Sequence of Moving Mass Particles
,”
J. Acoust. Soc. Am.
,
115
(
4
), pp.
1416
1419
. 10.1121/1.1652035
14.
Aldraihem
,
O. J.
, and
Baz
,
A.
,
2002
, “
Dynamic Stability of Stepped Beams Under Moving Loads
,”
J. Sound Vib.
,
250
(
5
), pp.
835
848
. 10.1006/jsvi.2001.3976
15.
Nikkhoo
,
A.
, and
Rofooei
,
F. R.
,
2012
, “
Parametric Study of the Dynamic Response of Thin Rectangular Plates Traversed by a Moving Mass
,”
Acta Mech.
,
223
(
1
), pp.
15
27
. 10.1007/s00707-011-0547-2
16.
Pirmoradian
,
M.
,
Keshmiri
,
M.
, and
Karimpour
,
H.
,
2015
, “
On the Parametric Excitation of a Timoshenko Beam due to Intermittent Passage of Moving Masses: Instability and Resonance Analysis
,”
Acta Mech.
,
226
(
4
), pp.
1241
1253
. 10.1007/s00707-014-1240-z
17.
Sun
,
Z.
,
2016
, “
Moving-Inertial-Loads-Induced Dynamic Instability for Slender Beams Considering Parametric Resonances
,”
ASME J. Vib. Acoust.
,
138
(
1
), pp.
1
9
. 10.1115/1.4031518
18.
Torkan
,
E.
,
Pirmoradian
,
M.
, and
Hashemian
,
M.
,
2018
, “
On the Parametric and External Resonances of Rectangular Plates on an Elastic Foundation Traversed by Sequential Masses
,”
Arch. Appl. Mech.
,
88
(
8
), pp.
1411
1428
. 10.1007/s00419-018-1379-5
19.
Ebrahimi
,
M.
,
Gholampour
,
S.
,
Kafshgarkolaei
,
H. J.
, and
Nikbin
,
I. M.
,
2015
, “
Dynamic Behavior of a Multispan Continuous Beam Traversed by a Moving Oscillator
,”
Acta Mech.
,
226
(
12
), pp.
4247
4257
. 10.1007/s00707-015-1474-4
20.
Lin
,
Y.-H.
, and
Trethewey
,
M. W.
,
1990
, “
Finite Element Analysis of Elastic Beams Subjected to Moving Dynamic Loads
,”
J. Sound Vib.
,
136
(
2
), pp.
323
342
. 10.1016/0022-460X(90)90860-3
21.
Pesterev
,
A. V.
, and
Bergman
,
L. A.
,
1997
, “
Response of Elastic Continuum Carrying Moving Linear Oscillator
,”
ASCE J. Eng. Mech.
,
123
(
8
), pp.
878
884
. 10.1061/(ASCE)0733-9399(1997)123:8(878)
22.
Yang
,
B.
,
Tan
,
C. A.
, and
Bergman
,
L. A.
,
2000
, “
Direct Numerical Procedure for Solution of Moving Oscillator Problems
,”
ASCE J. Eng. Mech.
,
126
(
5
), pp.
462
469
. 10.1061/(ASCE)0733-9399(2000)126:5(462)
23.
Yang
,
B.
,
Gao
,
H.
, and
Liu
,
S.
,
2018
, “
Vibrations of a Multi-Span Beam Structure Carrying Many Moving Oscillators
,”
Int. J. Struct. Stab. Dyn.
,
18
(
10
), p.
1850125
. 10.1142/S0219455418501250
24.
Gao
,
H.
, and
Yang
,
B.
,
2019
, “
Dynamic Analysis and Parametric Excitation of a Multi-Span Beam Structure Coupled with a Sequence of Moving Rigid Bodies
,”
Proceedings of the ASME 2018 IMECE
,
Pittsburgh, PA
,
Nov. 9–15, 2018
, p.
V04BT06A053
.
25.
Noh
,
K.
, and
Yang
,
B.
,
2014
, “
An Augmented State Formulation for Modeling and Analysis of Multibody Distributed Dynamic Systems
,”
ASME J. Appl. Mech.
,
81
(
5
), p.
051011
. 10.1115/1.4026124
26.
Meirovitch
,
L.
,
2010
,
Methods of Analytical Dynamics
,
Courier Corporation
,
North Chelmsford, MA
.
You do not currently have access to this content.