Abstract
Flexible structures carrying moving subsystems are found in various engineering applications. Periodic passage of subsystems over a supporting structure can induce parametric resonance, causing vibration with ever-increasing amplitude in the structure. Instead of its engineering implications, parametric excitation of a structure with sequentially passing oscillators has not been well addressed. The dynamic stability in such a moving-oscillator problem, due to viscoelastic coupling between the supporting structure and moving oscillators, is different from that in a moving-mass problem. In this paper, parametric resonance of coupled structure-moving oscillator systems is thoroughly examined, and a new stability analysis method is proposed. In the development, a set of sequential state equations is first derived, leading to a model for structures carrying a sequence of moving oscillators. Through the introduction of a mapping matrix, a set of stability criteria on parametric resonance is then established. Being of analytical form, these criteria can accurately and efficiently predict the dynamic stability of a coupled structure-moving oscillator system. In addition, by the spectral radius of the mapping matrix, the global stability of a coupled system can be conveniently investigated in a parameter space. The system model and stability criteria are illustrated and validated in numerical examples.