Abstract

Carbon nanotubes (CNTs) have been shown owning extraordinary mechanical properties for decades, but to date, their wide application as load-bearing structural materials has not been realized mainly due to the critical obstacles of weak interface, poor distribution and alignment, and lack of economic technology for mass production and processing. In order to overcome these obstacles, we proposed a potential route from as-grown CNT forest to collagen-mimicked CNT films with covalently crosslinked CNTs arranged in a staggered alignment. To consolidate the foundation of the route, its critical step of ion bombardment to construct the intertube crosslinks in CNT films was simulated using molecular dynamics simulations. Results show that the ion bombardment can efficiently construct the intertube crosslinks and greatly improve the elastic modulus and strength of CNT films by as much as 24% and 660%, respectively, with comparison to the nonbombarded ones. The influences of the number and the kinetic energy of the incident particles were systematically investigated and the corresponding contours were presented, suggesting the optimal energy and number of the incident particles for the elastic modulus and strength of collagen-mimicked CNT films. The work not only provides a novel route to mass fabrication of high-performance CNT fibers but also gives useful guidelines on the optimization of processing design.

References

References
1.
Yu
,
M. F.
,
Files
,
B. S.
,
Arepalli
,
S.
, and
Ruoff
,
R. S.
,
2000
, “
Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties
,”
Phys. Rev. Lett.
,
84
(
24
), pp.
5552
5555
. 10.1103/PhysRevLett.84.5552
2.
Treacy
,
M. M. J.
,
Ebbesen
,
T. W.
, and
Gibson
,
J. M.
,
1996
, “
Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes
,”
Nature
,
381
(
6584
), pp.
678
680
. 10.1038/381678a0
3.
Stankovich
,
S.
,
Dikin
,
D. A.
,
Dommett
,
G. H. B.
,
Kohlhaas
,
K. M.
,
Zimney
,
E. J.
,
Stach
,
E. A.
,
Piner
,
R. D.
,
Nguyen
,
S. T.
, and
Ruoff
,
R. S.
,
2006
, “
Graphene-Based Composite Materials
,”
Nature
,
442
(
7100
), pp.
282
286
. 10.1038/nature04969
4.
Kinloch
,
I. A.
,
Suhr
,
J.
,
Lou
,
J.
,
Young
,
R. J.
, and
Ajayan
,
P. M.
,
2018
, “
Composites With Carbon Nanotubes and Graphene: An Outlook
,”
Science
,
362
(
6414
), pp.
547
553
. 10.1126/science.aat7439
5.
Zhang
,
Z. Q.
,
Liu
,
B.
,
Zhang
,
Y. W.
,
Hwang
,
K. C.
, and
Gao
,
H. J.
,
2014
, “
Ultra-Strong Collagen-Mimic Carbon Nanotube Bundles
,”
Carbon
,
77
, pp.
1040
1053
. 10.1016/j.carbon.2014.06.020
6.
Li
,
Z. R.
, and
Liang
,
Z. Y.
,
2017
, “
Optimization of Buckypaper-Enhanced Multifunctional Thermoplastic Composites
,”
Sci. Rep.
,
7
, pp.
42423
. 10.1038/srep42423
7.
Blighe
,
F. M.
,
Young
,
K.
,
Vilatela
,
J. J.
,
Windle
,
A. H.
,
Kinloch
,
I. A.
,
Deng
,
L. B.
,
Young
,
R. J.
, and
Coleman
,
J. N.
,
2011
, “
The Effect of Nanotube Content and Orientation on the Mechanical Properties of Polymer-Nanotube Composite Fibers: Separating Intrinsic Reinforcement From Orientational Effects
,”
Adv. Funct. Mater.
,
21
(
2
), pp.
364
371
. 10.1002/adfm.201000940
8.
Ericson
,
L. M.
,
Fan
,
H.
,
Peng
,
H. Q.
,
Davis
,
V. A.
,
Zhou
,
W.
,
Sulpizio
,
J.
,
Wang
,
Y. H.
,
Booker
,
R.
,
Vavro
,
J.
,
Guthy
,
C.
,
Parra-Vasquez
,
A. N. G.
,
Kim
,
M. J.
,
Ramesh
,
S.
,
Saini
,
R. K.
,
Kittrell
,
C.
,
Lavin
,
G.
,
Schmidt
,
H.
,
Adams
,
W. W.
,
Billups
,
W. E.
,
Pasquali
,
M.
,
Hwang
,
W. F.
,
Hauge
,
R. H.
,
Fischer
,
J. E.
, and
Smalley
,
R. E.
,
2004
, “
Macroscopic, Neat, Single-Walled Carbon Nanotube Fibers
,”
Science
,
305
(
5689
), pp.
1447
1450
. 10.1126/science.1101398
9.
Zhang
,
X. F.
,
Li
,
Q. W.
,
Tu
,
Y.
,
Li
,
Y. A.
,
Coulter
,
J. Y.
,
Zheng
,
L. X.
,
Zhao
,
Y. H.
,
Jia
,
Q. X.
,
Peterson
,
D. E.
, and
Zhu
,
Y. T.
,
2007
, “
Strong Carbon-Nanotube Fibers Spun From Long Carbon-Nanotube Arrays
,”
Small
,
3
(
2
), pp.
244
248
. 10.1002/smll.200600368
10.
Bai
,
Y. X.
,
Zhang
,
R. F.
,
Ye
,
X.
,
Zhu
,
Z. X.
,
Xie
,
H. H.
,
Shen
,
B. Y.
,
Cai
,
D. L.
,
Liu
,
B. F.
,
Zhang
,
C. X.
,
Jia
,
Z.
,
Zhang
,
S. L.
,
Li
,
X. D.
, and
Wei
,
F.
,
2018
, “
Carbon Nanotube Bundles With Tensile Strength Over 80 GPa
,”
Nat. Nanotechnol.
,
13
(
7
), pp.
589
595
. 10.1038/s41565-018-0141-z
11.
Wang
,
D.
,
Song
,
P. C.
,
Liu
,
C. H.
,
Wu
,
W.
, and
Fan
,
S. S.
,
2008
, “
Highly Oriented Carbon Nanotube Papers Made of Aligned Carbon Nanotubes
,”
Nanotechnology
,
19
(
7
), p.
075609
. 10.1088/0957-4484/19/7/075609
12.
Nam
,
T. H.
,
Goto
,
K.
,
Oshima
,
K.
,
Premalal
,
E. V. A.
,
Shimamura
,
Y.
,
Inoue
,
Y.
,
Naito
,
K.
, and
Ogihara
,
S.
,
2016
, “
Mechanical Property Enhancement of Aligned Multi-Walled Carbon Nanotube Sheets and Composites Through Press-Drawing Process
,”
Adv. Compos. Mater.
,
25
(
1
), pp.
73
86
. 10.1080/09243046.2014.985419
13.
Bradford
,
P. D.
,
Wang
,
X.
,
Zhao
,
H. B.
,
Maria
,
J. P.
,
Jia
,
Q. X.
, and
Zhu
,
Y. T.
,
2010
, “
A Novel Approach to Fabricate High Volume Fraction Nanocomposites With Long Aligned Carbon Nanotubes
,”
Compos. Sci. Technol.
,
70
(
13
), pp.
1980
1985
. 10.1016/j.compscitech.2010.07.020
14.
Kis
,
A.
,
Csanyi
,
G.
,
Salvetat
,
J. P.
,
Lee
,
T. N.
,
Couteau
,
E.
,
Kulik
,
A. J.
,
Benoit
,
W.
,
Brugger
,
J.
, and
Forro
,
L.
,
2004
, “
Reinforcement of Single-Walled Carbon Nanotube Bundles by Intertube Bridging
,”
Nat. Mater.
,
3
(
3
), pp.
153
157
. 10.1038/nmat1076
15.
Peng
,
B.
,
Locascio
,
M.
,
Zapol
,
P.
,
Li
,
S. Y.
,
Mielke
,
S. L.
,
Schatz
,
G. C.
, and
Espinosa
,
H. D.
,
2008
, “
Measurements of Near-Ultimate Strength for Multiwalled Carbon Nanotubes and Irradiation-Induced Crosslinking Improvements
,”
Nat. Nanotechnol.
,
3
(
10
), pp.
626
631
. 10.1038/nnano.2008.211
16.
Fornasiero
,
F.
,
LeBlanc
,
M.
,
Charnvanichborikarn
,
S.
,
Kucheyev
,
S. O.
,
Shin
,
S. J.
,
Gong
,
K. P.
,
Ci
,
L. J.
,
Park
,
J.
, and
Miles
,
R.
,
2016
, “
Hierarchical Reinforcement of Randomly-Oriented Carbon Nanotube Mats by Ion Irradiation
,”
Carbon
,
99
, pp.
491
501
. 10.1016/j.carbon.2015.12.042
17.
Gigax
,
J. G.
,
Bradford
,
P. D.
, and
Shao
,
L.
,
2017
, “
Ion Beam Modification of Carbon Nanotube Yarn in Air and Vacuum
,”
Materials
,
10
(
8)
, p.
860
. 10.3390/ma10080860
18.
Vatankhah
,
A. R.
,
Hosseini
,
M. A.
, and
Malekie
,
S.
,
2019
, “
The Characterization of Gamma-Irradiated Carbon-Nanostructured Materials Carried Out Using a Multi-Analytical Approach Including Raman Spectroscopy
,”
Appl. Surf. Sci.
,
488
, pp.
671
680
. 10.1016/j.apsusc.2019.05.294
19.
Wang
,
Y. Y.
,
Colas
,
G.
, and
Filleter
,
T.
,
2016
, “
Improvements in the Mechanical Properties of Carbon Nanotube Fibers Through Graphene Oxide Interlocking
,”
Carbon
,
98
, pp.
291
299
. 10.1016/j.carbon.2015.11.008
20.
Naraghi
,
M.
,
Bratzel
,
G. H.
,
Filleter
,
T.
,
An
,
Z.
,
Wei
,
X. D.
,
Nguyen
,
S. T.
,
Buehler
,
M. J.
, and
Espinosa
,
H. D.
,
2013
, “
Atomistic Investigation of Load Transfer Between DWNT Bundles “Crosslinked” by PMMA Oligomers
,”
Adv. Funct. Mater.
,
23
(
15
), pp.
1883
1892
. 10.1002/adfm.201201358
21.
Beese
,
A. M.
,
Sarkar
,
S.
,
Nair
,
A.
,
Naraghi
,
M.
,
An
,
Z.
,
Moravsky
,
A.
,
Loutfy
,
R. O.
,
Buehler
,
M. J.
,
Nguyen
,
S. T.
, and
Espinosa
,
H. D.
,
2013
, “
Bio-Inspired Carbon Nanotube–Polymer Composite Yarns With Hydrogen Bond-Mediated Lateral Interactions
,”
ACS Nano
,
7
(
4
), pp.
3434
3446
. 10.1021/nn400346r
22.
Jung
,
Y.
,
Cho
,
Y. S.
,
Lee
,
J. W.
,
Oh
,
J. Y.
, and
Park
,
C. R.
,
2018
, “
How Can We Make Carbon Nanotube Yarn Stronger?
Compos. Sci. Technol.
,
166
, pp.
95
108
. 10.1016/j.compscitech.2018.02.010
23.
Lu
,
W. B.
,
Zu
,
M.
,
Byun
,
J. H.
,
Kim
,
B. S.
, and
Chou
,
T. W.
,
2012
, “
State of the Art of Carbon Nanotube Fibers: Opportunities and Challenges
,”
Adv. Mater.
,
24
(
14
), pp.
1805
1833
. 10.1002/adma.201104672
24.
Lin
,
M.
,
Sun
,
X. Y.
,
Xie
,
W.
, and
Zhang
,
Z. Q.
,
2018
, “
Load-Transfer and Failure Behaviors of Crosslinked Interfaces in Collagen-Mimic Carbon Nanotube Bundles
,”
Int. J. Mech. Sci.
,
135
, pp.
376
382
. 10.1016/j.ijmecsci.2017.11.036
25.
Jager
,
I.
, and
Fratzl
,
P.
,
2000
, “
Mineralized Collagen Fibrils: A Mechanical Model With a Staggered Arrangement of Mineral Particles
,”
Biophys. J.
,
79
(
4
), pp.
1737
1746
. 10.1016/S0006-3495(00)76426-5
26.
Buehler
,
M. J.
,
2008
, “
Nanomechanics of Collagen Fibrils Under Varying Cross-Link Densities: Atomistic and Continuum Studies
,”
J. Mech. Behav. Biomed. Mater.
,
1
(
1
), pp.
59
67
. 10.1016/j.jmbbm.2007.04.001
27.
Buehler
,
M. J.
,
2006
, “
Nature Designs Tough Collagen: Explaining the Nanostructure of Collagen Fibrils
,”
Proc. Natl. Acad. Sci. USA
,
103
(
33
), pp.
12285
12290
. 10.1073/pnas.0603216103
28.
Li
,
Q. W.
,
Zhang
,
X. F.
,
DePaula
,
R. F.
,
Zheng
,
L. X.
,
Zhao
,
Y. H.
,
Stan
,
L.
,
Holesinger
,
T. G.
,
Arendt
,
P. N.
,
Peterson
,
D. E.
, and
Zhu
,
Y. T.
,
2006
, “
Sustained Growth of Ultralong Carbon Nanotube Arrays for Fiber Spinning
,”
Adv. Mater.
,
18
(
23
), pp.
3160
3163
. 10.1002/adma.200601344
29.
Naraghi
,
M.
,
Filleter
,
T.
,
Moravsky
,
A.
,
Locascio
,
M.
,
Loutfy
,
R. O.
, and
Espinosa
,
H. D.
,
2010
, “
A Multiscale Study of High Performance Double-Walled Nanotube−Polymer Fibers
,”
ACS Nano
,
4
(
11
), pp.
6463
6476
. 10.1021/nn101404u
30.
Mulvihill
,
D. M.
,
O'Brien
,
N. P.
,
Curtin
,
W. A.
, and
McCarthy
,
M. A.
,
2016
, “
Potential Routes to Stronger Carbon Nanotube Fibres via Carbon Ion Irradiation and Deposition
,”
Carbon
,
96
, pp.
1138
1156
. 10.1016/j.carbon.2015.10.055
31.
O'Brien
,
N. P.
,
McCarthy
,
M. A.
, and
Curtin
,
W. A.
,
2013
, “
A Theoretical Quantification of the Possible Improvement in the Mechanical Properties of Carbon Nanotube Bundles by Carbon Ion Irradiation
,”
Carbon
,
53
, pp.
346
356
. 10.1016/j.carbon.2012.11.021
32.
O'Brien
,
N. P.
,
McCarthy
,
M. A.
, and
Curtin
,
W. A.
,
2013
, “
Improved Inter-Tube Coupling in CNT Bundles Through Carbon Ion Irradiation
,”
Carbon
,
51
, pp.
173
184
. 10.1016/j.carbon.2012.08.026
33.
Filleter
,
T.
, and
Espinosa
,
H. D.
,
2013
, “
Multi-Scale Mechanical Improvement Produced in Carbon Nanotube Fibers by Irradiation Cross-Linking
,”
Carbon
,
56
, p.
1
11
. 10.1016/j.carbon.2012.12.016
34.
Robinson
,
M.
,
Suarez-Martinez
,
I.
, and
Marks
,
N. A.
,
2013
, “
Generalized Method for Constructing the Atomic Coordinates of Nanotube Caps
,”
Phys. Rev. B
,
87
(
15
), p.
154430
. 10.1103/PhysRevB.87.155430
35.
Robinson
,
M.
, and
Marks
,
N. A.
,
2014
, “
NanoCap: A Framework for Generating Capped Carbon Nanotubes and Fullerenes
,”
Comput. Phys. Commun.
,
185
(
10
), pp.
2519
2526
. 10.1016/j.cpc.2014.05.029
36.
Berendsen
,
H. J. C.
,
Postma
,
J. P. M.
,
Vangunsteren
,
W. F.
,
Dinola
,
A.
, and
Haak
,
J. R.
,
1984
, “
Molecular-Dynamics With Coupling to an External Bath
,”
J. Chem. Phys.
,
81
(
8
), pp.
3684
3690
. 10.1063/1.448118
37.
Compagnini
,
G.
,
Giannazzo
,
F.
,
Sonde
,
S.
,
Raineri
,
V.
, and
Rimini
,
E.
,
2009
, “
Ion Irradiation and Defect Formation in Single Layer Graphene
,”
Carbon
,
47
(
14
), pp.
3201
3207
. 10.1016/j.carbon.2009.07.033
38.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular-Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
. 10.1006/jcph.1995.1039
39.
Pastewka
,
L.
,
Pou
,
P.
,
Perez
,
R.
,
Gumbsch
,
P.
, and
Moseler
,
M.
,
2008
, “
Describing Bond-Breaking Processes by Reactive Potentials: Importance of an Environment-Dependent Interaction Range
,”
Phys. Rev. B
,
78
(
16
), p.
161402
. 10.1103/PhysRevB.78.161402
40.
Beardmore
,
K.
,
Järvi
,
T.
,
Kermode
,
J.
,
Klemenz
,
A.
,
Koskinen
,
P.
,
Kunze
,
T.
,
von Lautz
,
J.
,
Moseler
,
M.
, and
Pastewka
,
L.
,
2013
, “
Atomistica
,” https://github.com/Atomistica/atomistica, Accessed April 18, 2018.
41.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data with OVITO-the Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
. 10.1088/0965-0393/18/1/015012
42.
Zhang
,
Z. Q.
,
Liu
,
B.
,
Chen
,
Y. L.
,
Jiang
,
H.
,
Hwang
,
K. C.
, and
Huang
,
Y.
,
2008
, “
Mechanical Properties of Functionalized Carbon Nanotubes
,”
Nanotechnology
,
19
(
39
), p.
395702
. 10.1088/0957-4484/19/39/395702
You do not currently have access to this content.