Abstract

Motivated by recent, unexpected, experimental observations of “intersonic” rupture growth in which both shear and dilatational Mach fronts were observed at the tips of dynamic frictional ruptures propagating at rupture speeds below the dilatational wave speed of the surrounding solid, and we formulate the general dynamic flexoelectric problem and we investigate its plane strain/plane polarization specialization. The coupling of the mechanical problem is analogous to a problem of Toupin–Mindlin gradient elasticity, where two micromechanical characteristic lengths and two microinertial lengths emerge as a combination of the mechanical, dielectric, and flexoelectric constants. The solution of the rupture growth problem allows us to provide an explanation of the experimental results. This becomes possible since flexoelectricity predicts a new aspect that was not observed in the classical analysis: subsonic super shear and supersonic crack tip (or rupture) motions are not related exclusively with the problem being elliptic or hyperbolic, respectively. This is due to the influence of the microinertial lengths, which, in addition to the ratios of the rupture to the wave speeds, also affect the slopes of the Mach cones. Moreover, we are able to explain the experimental paradox of the observation of double Mach cone pairs at the tips of supershear, but subsonic, frictional, ruptures in poly-methyl-methacrtylate (PMMA) by demonstrating that both dilatational and shear Mach cones could appear in flexoelectric solids at rupture speeds below the material dilatation wave speed, something that is impossible from the classical elasticity analysis and is due to the dispersive nature of the present problem. Our analysis is of relevance to the dynamic deformation and fracture of both synthetic and naturally occurring flexoelectric materials and systems, with implications to both engineering and earthquake source mechanics.

References

References
1.
Kogan
,
S. M.
,
1964
, “
Piezoelectric Effect During Inhomogeneous Deformation and Acoustic Scattering of Carriers in Crystals
,”
Sov. Phys. Solid State
,
5
(
10
), pp.
2069
2070
.
2.
Indebom
,
V. L.
,
Loginov
,
E. B.
, and
Osipov
,
M. A.
,
1981
, “
Flexoelectric Effect and Crystal Structure
,”
Krystallografiya
,
26
(
6
), pp.
157
1162
.
3.
Cross
,
L. E.
,
2006
, “
Flexoelectric Effects: Charge Separation in Insulating Solids Subjected to Elastic Strain Gradients
,”
J. Mater. Sci.
,
41
(
1
), pp.
53
63
. 10.1007/s10853-005-5916-6
4.
Krichen
,
S.
, and
Sharma
,
P.
,
2016
, “
Flexoelectricity: A Perspective on an Unusual Electromechanical Coupling
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
030801
. 10.1115/1.4032378
5.
Tagantsev
,
A. K.
,
1991
, “
Electric Polarization in Crystals and Its Response to Thermal and Elastic Perturbations
,”
Phase Trans.
,
35
(
3–4
), pp.
119
203
. 10.1080/01411599108213201
6.
Zubko
,
P.
,
Catalan
,
G.
, and
Tagantsev
,
A. K.
,
2013
, “
Flexoelectric Effect in Solids
,”
Annu. Rev. Mater. Res.
,
43
(
1
), pp.
387
421
. 10.1146/annurev-matsci-071312-121634
7.
Dumitrica
,
T.
,
Landis
,
C. M.
, and
Yakobson
,
B. I.
,
2002
, “
Curvature Induced Polarization in Carbon Nanoshells
,”
Chem. Phys. Lett.
,
360
(
1–2
), pp.
182
188
. 10.1016/S0009-2614(02)00820-5
8.
Petrov
,
A. G.
,
2002
, “
Fleoelectricity of Model and Living Membranes
,”
Biochim. Biophys. Acta.
,
1561
(
1
), pp.
1
25
. 10.1016/S0304-4157(01)00007-7
9.
Chu
,
B.
, and
Salem
,
D. R.
,
2012
, “
Flexoelectricity in Several Thermoplastic and Thermosetting Polymers
,”
Appl. Phys. Lett.
,
101
(
10
), p.
103905
. 10.1063/1.4750064
10.
Ma
,
W.
, and
Cross
,
L. E.
,
2003
, “
Strain-Gradient Induced Electric Polarization in Lead Zirconate Titanium Ceramics
,”
Appl. Phys. Lett.
,
82
, pp.
3923
3925
. 10.1063/1.1570517
11.
Harado
,
J.
,
Axe
,
J. D.
, and
Shirane
,
G.
,
1971
, “
Neutron-Scattering Study of Soft Modes in Cubic BaTiO3
,”
Phys. Rev. B
,
4
(
1
), pp.
155
162
. 10.1103/PhysRevB.4.155
12.
Hikata
,
A. C.
,
Elbaum
,
B.
,
Chuck
,
B.
, and
Truell
,
R.
,
1963
, “
Electrical-Charge Study in Sodium Chloride During Plastic Deformation
,”
J. Appl. Phys.
,
34
(
8
), pp.
2154
2158
. 10.1063/1.1702706
13.
Linde
,
R. K.
,
Murri
,
W. J.
, and
Doran
,
D. G.
,
1966
, “
Shock-Induced Electrical Polarization of Alkali Halides
,”
J. Appl. Phys.
,
37
(
7
), pp.
2527
2532
. 10.1063/1.1782079
14.
Ahrens
,
T. J.
,
1966
, “
High-Pressure Electrical Behavior and Equations of State of Magnesium Oxide From Shock Wave Measurements
,”
J. Appl. Phys.
,
37
(
7
), pp.
2532
2541
. 10.1063/1.1782080
15.
Weiner
,
J. H.
,
1981
, “
Hellmann-Feynman Theorem, Elastic Moduli and the Cauchy Relations
,”
Phys. Rev. B
,
24
(
2
), pp.
845
848
. 10.1103/PhysRevB.24.845
16.
Wert
,
C. A.
,
1986
, “
Internal Friction in Solids
,”
J. Appl. Phys.
,
60
(
6
), pp.
1888
1895
. 10.1063/1.337237
17.
Askar
,
A.
,
Lee
,
P. C. Y.
, and
Cakmak
,
A. S.
,
1970
, “
Lattice-Dynamics Approach to the Theory of Elastic Dielectrics With Polarization Gradient
,”
Phys. Rev. B
,
1
(
8
), pp.
3525
3537
. 10.1103/PhysRevB.1.3525
18.
Maraganti
,
R.
, and
Sharma
,
P.
,
2009
, “
Atomistic Determination of Flexoelectric Properties in Crystalline Dielectrics
,”
Phys. Rev. B
,
80
(
5
), p.
054109
. 10.1103/PhysRevB.80.054109
19.
Maranganti
,
R.
,
Sharma
,
N. D.
, and
Sharma
,
P.
,
2006
, “
Electromechanical Coupling in Non-Piezoelectric Materials due to Nanoscale Nonlocal Size Effects: Green’s Functions and Embedded Inclusions
,”
Phys. Rev. B
,
74
(
1
), p.
014110
. See also Erratum:
Sharma
,
N. D.
,
Landis
,
C.
, and
Sharma
,
P.
,
2010
, “
Piezoelectric Thin-Film Super-Lattices Without Using Piezoelectric Materials
,”
J. Appl. Phys.
,
108
, p.
024304
. 10.1103/PhysRevB.74.014110
20.
Shen
,
S.
, and
Hu
,
S.
,
2010
, “
A Theory of Flexoelectricity With Surface Effect for Elastic Dielectrics
,”
J. Mech. Phys. Solids
,
58
(
5
), pp.
665
677
. 10.1016/j.jmps.2010.03.001
21.
Mindlin
,
R. D.
,
1968
, “
Polarization Gradient in Elastic Dielectric
,”
Int. J. Solids Struct.
,
4
(
6
), pp.
637
642
. 10.1016/0020-7683(68)90079-6
22.
Sahin
,
E.
, and
Dost
,
S.
,
1988
, “
A Strain-Gradients Theory of Elastic Dielectrics With Spatial Dispersion
,”
Int. J. Engng. Sci.
,
26
(
12
), pp.
1231
1245
. 10.1016/0020-7225(88)90043-2
23.
Hu
,
T.
,
Yang
,
W.
,
Liang
,
X.
, and
Shen
,
S.
,
2017
, “
Wave Propagation in Flexoelectric Microstructured Solid
,”
J. Elasticity
, p.
10659
.
24.
Mao
,
S.
, and
Purohit
,
P. K.
,
2015
, “
Defects in Fleoelectric Solids
,”
J. Mech. Phys. Solids
,
84
, pp.
95
115
. 10.1016/j.jmps.2015.07.013
25.
Brich
,
A. A.
,
Tarasov
,
M. S.
, and
Tsukerman
,
V. A.
,
1960
, “
Electrical Conductivity of Dielectrics in Strong Shock Waves
,”
Soviet Phys. JETP
,
11
, pp.
15
17
.
26.
Joigneau
,
S.
, and
Thaivervin
,
J.
,
1958
, “
Electrical Conductivity of Sulfur Under the Action of a Shock Wave
,”
C. R Acad. Sci.
,
246
, pp.
3422
3425
.
27.
Aki
,
K.
, and
Richards
,
P. G.
,
1980
,
Qualitative Seismology. Volume II
,
W.H. Freeman and Company
,
New York
.
28.
Rosakis
,
A. J.
,
Samudrala
,
O.
, and
Coker
,
D.
,
1999
, “
Cracks Faster Than the Shear Wave Speed
,”
Science
,
284
(
5418
), pp.
1334
1340
. 10.1126/science.284.5418.1337
29.
Rosakis
,
A. J.
,
2002
, “
Intersonic Shear Cracks and Fault Ruptures
,”
Adv. Phys.
,
51
(
4
), pp.
1189
1257
. 10.1080/00018730210122328
30.
Xia
,
K.
,
Rosakis
,
A. J.
, and
Kanamori
,
H.
,
2004
, “
Laboratory Earthquakes: The Sub-Rayleigh-to-Supershear Rupture Transition
,”
Science
,
303
(
5665
), pp.
1859
1861
. 10.1126/science.1094022
31.
Rosakis
,
A. J.
, and
Huang
,
Y.
,
2003
, “Intersonic Debonding,”
Comprehensive Structural Integrity Handbook, Fracture of Materials From Nano to Macro, Volume Chap 8: Interfacial and Nanoscale Failure
,
W.
Gerberich
, and
W.
Yang
, eds.,
Elsevier Ltd.
,
New York
, pp.
137
179
.
32.
Rosakis
,
A. J.
,
Lykotrafitis
,
G.
,
Xia
,
K.
, and
Kanamori
,
H.
,
2007
, “Dynamic Shear Rupture in Frictional Interfaces: Speeds, Directionality and Modes,”
Treatise on Geophysics
, 2nd ed.,
G.
Schubert
, ed., Vol.
4
,
Elsevier
,
Amsterdam
, pp.
183
213
.
33.
Rosakis
,
A. J.
,
Rubino
,
V.
, and
Lapusta
,
N.
,
2020
, “
Recent Milestones in Unravelling the Full-Field Structure of Dynamic Shear Cracks and Fault Ruptures in Real Time: From Photoelasticity to Ultrahigh-Speed Digital Image Correlation
,”
J. Appl. Mech.
,
87
(
3
). 10.1115/1.4045715
34.
Bouchon
,
M.
,
Bouin
,
M. P.
,
Karabulut
,
H.
,
Toksöz
,
M. N.
,
Dietrich
,
M.
, and
Rosakis
,
A. J.
,
2001
, “
How Fast Is Rupture During an Earthquake? NewInsights From the 1999 Turkey Earthquakes
,”
Geophys. Res. Lett.
,
28
(
14
), pp.
2723
2726
. 10.1029/2001GL013112
35.
Ellsworth
,
W.
,
Celebi
,
M.
,
Evans
,
J.
,
Jensen
,
E.
,
Kayen
,
R.
,
Metz
,
M.
,
Nyman
,
D.
,
Roddick
,
J.
,
Spudich
,
P.
, and
Stephens
,
C.
,
2004
, “
Near-Field Ground Motion of the 2002 Denali Fault, Alaska, Earthquake Recorded at Pump Station 10
,”
Earthq. Spectra
,
20
(
3
), pp.
597
615
. 10.1193/1.1778172
36.
Song
,
S. G.
,
Beroza
,
G. C.
, and
Segall
,
P.
,
2008
, “
A Unified Source Model for the 1906 San Francisco Earthquake
,”
Bull. Seismol. Soc. Am.
,
98
(
2
), pp.
823
831
. 10.1785/0120060402
37.
Bao
,
H.
,
Ampuero
,
J.-P.
,
Meng
,
L.
,
Fielding
,
E. J.
,
Liang
,
C.
,
Milliner
,
C. W.
,
Feng
,
T.
, and
Huang
,
H.
,
2019
, “
Early and Persistent Supershear Rupture of the 2018 Magnitude 7.5 Palu Earthquake
,”
Nat. Geosci.
,
12
(
3
), pp.
200
205
. 10.1038/s41561-018-0297-z
38.
Amlani
,
F.
,
Bhat
,
H. S.
,
Simons
,
W. J. F.
,
Schubnel
,
A.
,
Vigny
,
C.
,
Rosakis
,
A. J.
,
Efendi
,
J.
,
Elbanna
,
A.
, and
Abidin
,
H. Z.
,
2020
, “
Supershear Tsunamis: Insights From the Mw 7.5 Palu Earthquake
,”
Nat. Geosci.
(submitted).
39.
Gori
,
M.
,
Rubino
,
V.
,
Rosakis
,
A. J.
, and
Lapousta
,
N.
,
2018
, “
Pressure Shock Fronts Formed by Ultra-Fast Shear Cracks in Viscoelastic Materials
,”
Nat. Commun.
,
9
(
1
), p.
4754
. 10.1038/s41467-018-07139-4
40.
Rubino
,
V.
,
Rosakis
,
A.
, and
Lapusta
,
N.
,
2019
, “
Full-Field Ultrahigh-Speed Quantification of Dynamic Shear Ruptures Using Digital Image Correlation
,”
Exp. Mech.
,
59
(
551–582
), pp.
1
32
. 10.1007/s11340-019-00501-7
41.
Rubino
,
V.
,
Rosakis
,
A. J.
, and
Lapusta
,
N.
,
2020
, “
Spatiotemporal Properties of Sub-Rayleigh and Supershear Ruptures Inferred From Full-Field Dynamic Imaging of Laboratory Experiments
,”
J. Geophys. Res. Solid Earth
,
125
, p.
e2019JB018922
. 10.1029/2019jb018922
42.
Giannakopoulos
,
A. E.
, and
Th
,
Z.
,
2019
, “
Uniformly Moving Screw Dislocation in Flexoelectric Materials
,”
Eur. J. Solids Mech. A Solids.
,
78
, p.
103843
. 10.1016/j.euromechsol.2019.103843
43.
Maraganti
,
R.
, and
Sharma
,
P.
,
2007
, “
Length Scales at Which Classical Elasticity Breaks Down for Various Materials
,”
Phys. Rev. Letters
,
98
(
19
), p.
195504
. 10.1103/PhysRevLett.98.195504
44.
Shu
,
L.
,
Wei
,
X.
,
Pang
,
T.
,
Yao
,
X.
, and
Wang
,
C.
,
2011
, “
Symmetry of Flexoelectric Coefficients in Crystalline Medium
,”
J. Appl. Phys.
,
110
(
10
), p.
104106
. 10.1063/1.3662196
45.
Toupin
,
R. A.
,
1956
, “
The Elastic Dielectric
,”
J. Ration. Mech. Anal.
,
5
, pp.
849
915
.
46.
Mindlin
,
R. D.
,
1969
, “
Continuum and Lattice Theories of Influence of Electromechanical Coupling on Capacitance of Thin Dielectric Films
,”
Int. J. Solids Structures
,
5
(
11
), pp.
1197
1208
. 10.1016/0020-7683(69)90053-5
47.
Jackson
,
J. D.
,
1975
,
Classical Electrodynamics
,
John Willey & Sons
,
New York
.
48.
Mead
,
D. J.
, and
Fuoss
,
R. M.
,
1942
, “
Electrical Properties of Solids. XIII Polymethyl Acrylate, Polymethyl Methacrylate, Polymethyl–a-Chloracrylate and Polychloroethyl Methacrylate
,”
J. Am. Chem. Soc.
,
64
(
10
), pp.
2380
2393
. 10.1021/ja01262a046
49.
Harting
,
C.
,
Kleppinger
,
R.
, and
Jungnickel
,
B.-J.
,
1995
, “
Kerr-Effect Measurements on Poly(Vinylidine Fluoride) Poly(Methyl Methacrylate) and Their Blends
,”
Polymer
,
36
(
24
), pp.
4553
4559
. 10.1016/0032-3861(95)96823-Q
50.
Hartmann
,
L.
,
Gorbatschow
,
W.
,
Hauwede
,
J.
, and
Kremer
,
F.
,
2002
, “
Molecular Dynamics in Thin Films of Isotactic Poly(Methyl Methacrylate)
,”
Eur. Phys. J.
,
E8
, pp.
145
154
.
51.
Kornyshev
,
A. A.
, and
Vorotyntsev
,
M. A.
,
1981
, “
The Effect of Spatial Dispersion of the Dielectric Permittivity on the Capacitance of Thin Insulating Films: Non-Linear Dependence of the Inverse Capacitance on Film Thickness
,”
Thin Solid Films
,
75
(
2
), pp.
105
118
. 10.1016/0040-6090(81)90445-4
52.
Furukawa
,
T.
,
Uematsu
,
Y.
,
Asakawa
,
K.
, and
Wada
,
Y.
,
1968
, “
Piezoelectricity, Pyroelectricity and Thermoelectricity of Polymer Films
,”
J. Appl. Polym. Sci.
,
12
(
12
), pp.
2675
2689
. 10.1002/app.1968.070121209
53.
Han
,
C.-S.
,
2010
, “
Influence of the Molecular Structure on Indentation Size Effect in Polymers
,”
Mater. Sci. Eng., A
,
527
(
3
), pp.
619
624
. 10.1016/j.msea.2009.08.033
54.
Mindlin
,
R. D.
,
1963
, “
Micro-Structure in Linear Elasticity
,”
Arch. Rational Mech. Anal.
,
16
(
1
), pp.
51
78
. 10.1007/BF00248490
55.
Sternberg
,
E.
,
1960
, “
On the Integration of the Equations of Motion in the Classical Theory of Elasticity
,”
Arch. Rat. Mech. Anal.
,
6
(
1
), pp.
34
50
. 10.1007/BF00276152
56.
Freund
,
l. B.
,
1998
,
Dynamic Fracture Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
57.
Courant
,
R.
, and
Hilbert
,
D.
,
1953
,
Methods of Mathematical Physics
, Vol.
2
,
Intescience Publishers
,
New York
.
58.
Renardy
,
M.
, and
Rogers
,
R. C.
,
2004
,
An Introduction to Partial Differential Equations
, 2nd ed.,
Springer Verlag
,
Heidelberg, Germany
.
59.
Ames
,
K. A.
, and
Ames
,
W. F.
,
1982
, “
On Group Analysis of the von Karman Equations
,”
Nonlinear Anal. Theory Appl.
,
6
(
8
), pp.
845
853
. 10.1016/0362-546X(82)90069-4
You do not currently have access to this content.