Abstract

We simulate two back-to-back full-scale tidal turbines using an in-house computational free-surface flow code. We briefly present the mathematical formulation of the computational framework. We first validate the proposed method on a single turbine configuration. A mesh refinement study is conducted to ensure the result is converged. We then quantify the wake effect and free-surface effect on tidal turbine performance by a case study. To investigate the free-surface effect, we perform both pure hydrodynamics and free-surface simulations. The time history of thrust and production coefficients is quantified. In both pure hydrodynamics and free-surface flow simulations, thrust and production coefficients of the downstream turbines drop significantly due to the velocity deficit in the wake. By comparing the result between free-surface flow and pure hydrodynamics simulations for the configuration considered here, we find that the free-surface does not affect the upstream turbine but significantly affects the downstream turbine.

References

References
1.
Burrows
,
R.
,
Yates
,
N. C.
,
Hedges
,
T. S.
,
Li
,
M.
,
Zhou
,
J.
,
Chen
,
D.
,
Walkington
,
I.
,
Wolf
,
J.
,
Holt
,
J.
, and
Proctor
,
R.
,
2009
, “
Tidal Energy Potential in UK Waters
,”
Proceedings of the Institution of Civil Engineers–Maritime Engineering
,
London
, Vol.
162
,
Thomas Telford Ltd
., pp.
155
164
.
2.
Ponta
,
F. L.
, and
Jacovkis
,
P. M.
,
2008
, “
Marine-Current Power Generation by Diffuser-Augmented Floating Hydro-Turbines
,”
Renewable Energy
,
33
(
4
), pp.
665
673
. 10.1016/j.renene.2007.04.008
3.
Brutto
,
O. A. L.
,
Guillou
,
S. S.
,
Thiébot
,
J.
, and
Gualous
,
H.
,
2017
, “
Assessing the Effectiveness of a Global Optimum Strategy Within a Tidal Farm for Power Maximization
,”
Appl. Energy
,
204
, pp.
653
666
. 10.1016/j.apenergy.2017.07.090
4.
Ward
,
S. L.
,
Robins
,
P. E.
,
Lewis
,
M. J.
,
Iglesias
,
G.
,
Hashemi
,
M. R.
, and
Neill
,
S. P.
,
2018
, “
Tidal Stream Resource Characterisation in Progressive Versus Standing Wave Systems
,”
Appl. Energy
,
220
, pp.
274
285
. 10.1016/j.apenergy.2018.03.059
5.
Barbarelli
,
S.
,
Florio
,
G.
,
Amelio
,
M.
, and
Scornaienchi
,
N.
,
2018
, “
Preliminary Performance Assessment of a Novel On-Shore System Recovering Energy From Tidal Currents
,”
Appl. Energy
,
224
, pp.
717
730
. 10.1016/j.apenergy.2018.05.029
6.
Goundar
,
J. N.
, and
Ahmed
,
M. R.
,
2013
, “
Design of a Horizontal Axis Tidal Current Turbine
,”
Appl. Energy
,
111
, pp.
161
174
. 10.1016/j.apenergy.2013.04.064
7.
Chen
,
Y.
,
Lin
,
B.
,
Lin
,
J.
, and
Wang
,
S.
,
2017
, “
Experimental Study of Wake Structure Behind a Horizontal Axis Tidal Stream Turbine
,”
Appl. Energy
,
196
, pp.
82
96
. 10.1016/j.apenergy.2017.03.126
8.
Lee
,
J. H.
,
Park
,
S.
,
Kim
,
D. H.
,
Rhee
,
S. H.
, and
Kim
,
M. C.
,
2012
, “
Computational Methods for Performance Analysis of Horizontal Axis Tidal Stream Turbines
,”
Appl. Energy
,
98
, pp.
512
523
. 10.1016/j.apenergy.2012.04.018
9.
Liu
,
P.
, and
Bose
,
N.
,
2012
, “
Prototyping a Series of Bi-Directional Horizontal Axis Tidal Turbines for Optimum Energy Conversion
,”
Appl. Energy
,
99
, pp.
50
66
. 10.1016/j.apenergy.2012.04.042
10.
Kolekar
,
N.
, and
Banerjee
,
A.
,
2015
, “
Performance Characterization and Placement of a Marine Hydrokinetic Turbine in a Tidal Channel Under Boundary Proximity and Blockage Effects
,”
Appl. Energy
,
148
, pp.
121
133
. 10.1016/j.apenergy.2015.03.052
11.
Brutto
,
O. A. L.
,
Thiébot
,
J.
,
Guillou
,
S. S.
, and
Gualous
,
H.
,
2016
, “
A Semi-Analytic Method to Optimize Tidal Farm Layouts–Application to the Alderney Race (raz Blanchard), France
,”
Appl. Energy
,
183
, pp.
1168
1180
. 10.1016/j.apenergy.2016.09.059
12.
Batten
,
W. M. J.
,
Bahaj
,
A. S.
,
Molland
,
A. F.
, and
Chaplin
,
J. R.
,
2006
, “
Hydrodynamics of Marine Current Turbines
,”
Renewable Energy
,
31
(
2
), pp.
249
256
. 10.1016/j.renene.2005.08.020
13.
Batten
,
W. M. J.
,
Bahaj
,
A. S.
,
Molland
,
A. F.
, and
Chaplin
,
J. R.
,
2008
, “
The Prediction of the Hydrodynamic Performance of Marine Current Turbines
,”
Renewable Energy
,
33
(
5
), pp.
1085
1096
. 10.1016/j.renene.2007.05.043
14.
Batten
,
W. M. J.
,
Bahaj
,
A. S.
,
Molland
,
A. F.
, and
Chaplin
,
J. R.
, and
Sustainable Energy Research Group
,
2007
, “
Experimentally Validated Numerical Method for the Hydrodynamic Design of Horizontal Axis Tidal Turbines
,”
Ocean Eng.
,
34
(
7
), pp.
1013
1020
. 10.1016/j.oceaneng.2006.04.008
15.
Bahaj
,
A. S.
, and
Myers
,
L. E.
,
2003
, “
Fundamentals Applicable to the Utilisation of Marine Current Turbines for Energy Production
,”
Renewable Energy
,
28
(
14
), pp.
2205
2211
. 10.1016/S0960-1481(03)00103-4
16.
Bai
,
X.
,
Avital
,
E. J.
,
Munjiza
,
A.
, and
Williams
,
J. J.
,
2014
, “
Numerical Simulation of a Marine Current Turbine in Free Surface Flow
,”
Renewable Energy
,
63
, pp.
715
723
. 10.1016/j.renene.2013.09.042
17.
Bahaj
,
A. S.
,
Molland
,
A. F.
,
Chaplin
,
J. R.
, and
Batten
,
W. M. J.
,
2007
, “
Power and Thrust Measurements of Marine Current Turbines Under Various Hydrodynamic Flow Conditions in a Cavitation Tunnel and a Towing Tank
,”
Renewable Energy
,
32
(
3
), pp.
407
426
. 10.1016/j.renene.2006.01.012
18.
Zhu
,
Q.
, and
Yan
,
J.
,
2019
, “
A Moving-Domain CFD Solver in Fenics With Applications to Tidal Turbine Simulations in Turbulent Flows
,”
Comput. Math. Appl.
in press.
19.
Clarke
,
J. A.
,
Connor
,
G.
,
Grant
,
A. D.
, and
Johnstone
,
C. M.
,
2007
, “
Design and Testing of a Contra-Rotating Tidal Current Turbine
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
221
(
2
), pp.
171
179
. 10.1243/09576509JPE296
20.
Bahaj
,
A. S.
,
Batten
,
W. M. J.
, and
McCann
,
G.
,
2007
, “
Experimental Verifications of Numerical Predictions for the Hydrodynamic Performance of Horizontal Axis Marine Current Turbines
,”
Renewable Energy
,
32
(
15
), pp.
2479
2490
. 10.1016/j.renene.2007.10.001
21.
Yan
,
J.
,
Deng
,
X.
,
Korobenko
,
A.
, and
Bazilevs
,
Y.
,
2017
, “
Free-Surface Flow Modeling and Simulation of Horizontal-Axis Tidal-Stream Turbines
,”
Comput. Fluids
,
158
, pp.
157
166
. 10.1016/j.compfluid.2016.06.016
22.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
. 10.1016/0021-9991(88)90002-2
23.
Osher
,
S.
, and
Fedkiw
,
R.
,
2006
,
Level Set Methods and Dynamic Implicit Surfaces
, Vol.
153
,
Springer Science and Business Media
.
24.
Akkerman
,
I.
,
Bazilevs
,
Y.
,
Kees
,
C. E.
, and
Farthing
,
M. W.
,
2011
, “
Isogeometric Analysis of Free-Surface Flow
,”
J. Comput. Phys.
,
230
, pp.
4137
4152
. 10.1016/j.jcp.2010.11.044
25.
Akkerman
,
I.
,
Bazilevs
,
Y.
,
Benson
,
D. J.
,
Farthing
,
M. W.
, and
Kees
,
C. E.
,
2012
, “
Free-Surface Flow and Fluid–Object Interaction Modeling With Emphasis on Ship Hydrodynamics
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
010905
. 10.1115/1.4005072
26.
Yan
,
J.
,
Korobenko
,
A.
,
Deng
,
X.
, and
Bazilevs
,
Y.
,
2016
, “
Computational Free-Surface Fluid–Structure Interaction With Application to Floating Offshore Wind Turbines
,”
Comput. Fluids
,
141
(
1
), pp.
155
174
. 10.1016/j.compfluid.2016.03.008
27.
Kees
,
C. E.
,
Akkerman
,
I.
,
Farthing
,
M. W.
, and
Bazilevs
,
Y.
,
2011
, “
A Conservative Level Set Method Suitable for Variable-Order Approximations and Unstructured Meshes
,”
J. Comput. Phys.
,
230
, pp.
4536
4558
. 10.1016/j.jcp.2011.02.030
28.
Zhu
,
Q.
,
Xu
,
F.
,
Xu
,
S.
,
Hsu
,
M.-C.
, and
Yan
,
J.
,
2019
, “
An Immersogeometric Formulation for Free-Surface Flows With Application to Marine Engineering Problems
,”
Comput. Methods Appl. Mech. Eng.
,
361
(
1
), pp.
112748
112798
.
29.
Yan
,
J.
,
Yan
,
W.
,
Lin
,
S.
, and
Wagner
,
G. J.
,
2018
, “
A Fully Coupled Finite Element Formulation for Liquid–Solid–Gas Thermo-Fluid Flow With Melting and Solidification
,”
Comput. Methods Appl. Mech. Eng.
,
336
, pp.
444
470
. 10.1016/j.cma.2018.03.017
30.
Yan
,
J.
,
Lin
,
S.
,
Bazilevs
,
Y.
, and
Wagner
,
G. J.
,
2018
, “
Isogeometric Analysis of Multi-Phase Flows With Surface Tension and with Application to Dynamics of Rising Bubbles
,”
Comput. Fluids
,
179
, pp.
777
789
.
31.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2012
, “
ALE-VMS and ST-VMS Methods for Computer Modeling of Wind-Turbine Rotor Aerodynamics and Fluid–Structure Interaction
,”
Math. Models Methods Appl. Sci.
,
22
(
supp02
), p.
1230002
. 10.1142/S0218202512300025
32.
Takizawa
,
K.
,
Bazilevs
,
Y.
,
Tezduyar
,
T. E.
,
Long
,
C. C.
,
Marsden
,
A. L.
, and
Schjodt
,
K.
,
2014
, “
ST and ALE-VMS Methods for Patient-Specific Cardiovascular Fluid Mechanics Modeling
,”
Math. Models Methods Appl. Sci.
,
24
, pp.
2437
2486
. 10.1142/S0218202514500250
33.
Bazilevs
,
Y.
,
Korobenko
,
A.
,
Deng
,
X.
,
Yan
,
J.
,
Kinzel
,
M.
, and
Dabiri
,
J. O.
,
2014
, “
FSI Modeling of Vertical-Axis Wind Turbines
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
081006
. 10.1115/1.4027466
34.
Bazilevs
,
Y.
,
Korobenko
,
A.
,
Yan
,
J.
,
Pal
,
A.
,
Gohari
,
S. M. I.
, and
Sarkar
,
S.
,
2015
, “
ALE–VMS Formulation for Stratified Turbulent Incompressible Flows with Applications
,”
Math. Models Methods Appl. Sci.
,
25
(
1
), p.
1540011
.
35.
Bazilevs
,
Y.
,
Korobenko
,
A.
,
Deng
,
X.
, and
Yan
,
J.
,
2015
, “
Novel Structural Modeling and Mesh Moving Techniques for Advanced FSI Simulation of Wind Turbines
,”
Int. J. Numerical Methods Eng.
,
102
(
3–4
), pp.
766
783
. 10.1002/nme.4738
36.
Korobenko
,
A.
,
Hsu
,
M.-C.
,
Akkerman
,
I.
, and
Bazilevs
,
Y.
,
2013
, “
Aerodynamic Simulation of Vertical-Axis Wind Turbines
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
021011
. 10.1115/1.4024415
37.
Korobenko
,
A.
,
Yan
,
J.
,
Gohari
,
S.
,
Sarkar
,
S.
, and
Bazilevs
,
Y.
,
2017
, “
Fsi Simulation of Two Back-To-Back Wind Turbines in Atmospheric Boundary Layer Flow
,”
Comput. Fluids
,
158
, pp.
167
175
. 10.1016/j.compfluid.2017.05.010
38.
Korobenko
,
A.
,
Hsu
,
M.-C.
,
Akkerman
,
I.
,
Tippmann
,
J.
, and
Bazilevs
,
Y.
,
2013
, “
Structural Mechanics Modeling and FSI Simulation of Wind Turbines
,”
Math. Models Methods Appl. Sci.
,
23
(
2
), pp.
249
272
. 10.1142/S0218202513400034
39.
Ravensbergen
,
M.
,
Bayram
,
A.
, and
Korobenko
,
A.
,
2020
, “
The Actuator Line Method for Wind Turbine Modelling Applied in a Variational Multiscale Framework
,”
Comput. Fluids
, p.
104465
. 10.1016/j.compfluid.2020.104465
40.
Bayram
,
A.
,
Bear
,
C.
,
Bear
,
M.
, and
Korobenko
,
A.
,
2020
, “
Performance Analysis of Two Vertical-Axis Hydrokinetic Turbines Using Variational Multiscale Method
,”
Comput. Fluids
,
200
, pp.
104432
. 10.1016/j.compfluid.2020.104432
41.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
,
1982
, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
(
1–3
), pp.
199
259
. 10.1016/0045-7825(82)90071-8
42.
Tezduyar
,
T. E.
,
2003
, “
Computation of Moving Boundaries and Interfaces and Stabilization Parameters
,”
Int. J. Numerical Methods Fluids
,
43
(
5
), pp.
555
575
. 10.1002/fld.505
43.
Takizawa
,
K.
,
Tezduyar
,
T. E.
, and
Kuraishi
,
T.
,
2015
, “
Multiscale ST Methods for Thermo-Fluid Analysis of a Ground Vehicle and Its Tires
,”
Math. Models Methods Appl. Sci.
,
25
(
12
), pp.
2227
2255
. 10.1142/S0218202515400072
44.
Bazilevs
,
Y.
, and
Hughes
,
T. J. R.
,
2007
, “
Weak Imposition of Dirichlet Boundary Conditions in Fluid Mechanics
,”
Comput. Fluids
,
36
(
1
), pp.
12
26
. 10.1016/j.compfluid.2005.07.012
45.
Bazilevs
,
Y.
,
Michler
,
C.
,
Calo
,
V. M.
, and
Hughes
,
T. J. R.
,
2010
, “
Isogeometric Variational Multiscale Modeling of Wall-Bounded Turbulent Flows With Weakly Enforced Boundary Conditions on Unstretched Meshes
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
13–16
), pp.
780
790
. 10.1016/j.cma.2008.11.020
46.
Takizawa
,
K.
,
Tezduyar
,
T. E.
,
Mochizuki
,
H.
,
Hattori
,
H.
,
Mei
,
S.
,
Pan
,
L.
, and
Montel
,
K.
,
2015
, “
Space–Time VMS Method for Flow Computations with Slip Interfaces (ST-SI)
,”
Math. Models Methods Appl. Sci.
,
25
(
12
), pp.
2377
2406
. 10.1142/S0218202515400126
47.
Takizawa
,
K.
,
Tezduyar
,
T. E.
,
Kuraishi
,
T.
,
Tabata
,
S.
, and
Takagi
,
H.
,
2016
, “
Computational Thermo-Fluid Analysis of a Disk Brake
,”
Comput. Mech.
,
57
(
6
), pp.
965
977
. Published online, doi:10.1007/s00466-016-1272-4 10.1007/s00466-016-1272-4
48.
Hsu
,
M.-C.
,
Akkerman
,
I.
, and
Bazilevs
,
Y.
,
2014
, “
Finite Element Simulation of Wind Turbine Aerodynamics: Validation Study Using NREL Phase VI Experiment
,”
Wind Energy
,
17
(
3
), pp.
461
481
. 10.1002/we.1599
49.
Hsu
,
M.-C.
, and
Bazilevs
,
Y.
,
2012
, “
Fluid–Structure Interaction Modeling of Wind Turbines: Simulating the Full Machine
,”
Comput. Mech.
,
50
(
6
), pp.
821
833
. 10.1007/s00466-012-0772-0
50.
Xu
,
F.
,
Schillinger
,
D.
,
Kamensky
,
D.
,
Varduhn
,
V.
,
Wang
,
C.
, and
Hsu
,
M.-C.
,
2016
, “
The Tetrahedral Finite Cell Method for Fluids: Immersogeometric Analysis of Turbulent Flow Around Complex Geometries
,”
Comput. Fluids
,
141
, pp.
135
154
. 10.1016/j.compfluid.2015.08.027
51.
Wang
,
C.
,
Xu
,
F.
,
Hsu
,
M.-C.
, and
Krishnamurthy
,
A.
,
2017
, “
Rapid B-Rep Model Preprocessing for Immersogeometric Analysis Using Analytic Surfaces
,”
Comput. Aided Geometric Des.
,
52–53
, pp.
190
204
. 10.1016/j.cagd.2017.03.002
52.
Bazilevs
,
Y.
,
Kamran
,
K.
,
Moutsanidis
,
G.
,
Benson
,
D.
, and
Oñate
,
E.
,
2017
, “
A New Formulation for Air-Blast Fluid–Structure Interaction Using An Immersed Approach. Part I: Basic Methodology and FEM-Based Simulations
,”
Comput. Mech.
,
60
(
1
), pp.
83
100
. 10.1007/s00466-017-1394-3
53.
Bazilevs
,
Y.
,
Moutsanidis
,
G.
,
Bueno
,
J.
,
Kamran
,
K.
,
Kamensky
,
D.
,
Hillman
,
M. C.
,
Gomez
,
H.
, and
Chen
,
J.
,
2017
, “
A New Formulation for Air-Blast Fluid–Structure Interaction Using An Immersed Approach: Part Ii—Coupling of IGA and Meshfree Discretizations
,”
Comput. Mech.
,
60
(
1
), pp.
101
116
. 10.1007/s00466-017-1395-2
54.
Xu
,
F.
,
Moutsanidis
,
G.
,
Kamensky
,
D.
,
Hsu
,
M.-C.
,
Murugan
,
M.
,
Ghoshal
,
A.
, and
Bazilevs
,
Y.
,
2017
, “
Compressible Flows on Moving Domains: Stabilized Methods, Weakly Enforced Essential Boundary Conditions, Sliding Interfaces, and Application to Gas-Turbine Modeling
,”
Comput. Fluids
,
158
, pp.
201
220
. 10.1016/j.compfluid.2017.02.006
55.
Hsu
,
M.-C.
,
Akkerman
,
I.
, and
Bazilevs
,
Y.
,
2012
, “
Wind Turbine Aerodynamics Using ALE–VMS: Validation and the Role of Weakly Enforced Boundary Conditions
,”
Comput. Mech.
,
50
(
4
), pp.
499
511
. 10.1007/s00466-012-0686-x
56.
Bazilevs
,
Y.
, and
Hughes
,
T. J. R.
,
2008
, “
NURBS-Based Isogeometric Analysis for the Computation of Flows About Rotating Components
,”
Comput. Mech.
,
43
(
1
), pp.
143
150
. 10.1007/s00466-008-0277-z
57.
Yan
,
J.
,
Augier
,
B.
,
Korobenko
,
A.
,
Czarnowski
,
J.
,
Ketterman
,
G.
, and
Bazilevs
,
Y.
,
2015
, “
FSI Modeling of a Propulsion System Based on Compliant Hydrofoils in a Tandem Configuration
,”
Comput. Fluids
,
141
, pp.
201
211
. 10.1016/j.compfluid.2015.07.013
58.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
. 10.1115/1.2900803
You do not currently have access to this content.