Abstract

The geometrically exact nonlinear deflection of a beamshell is considered here as an extension of the formulation derived by Libai and Simmonds (1998, The Nonlinear Theory of Elastic Shells, Cambridge University Press, Cambridge, UK) to include deformation through the thickness of the beam, as might arise from transverse squeezing loads. In particular, this effect can lead to receding contact for a uniform beamshell resting on a smooth, flat, rigid surface; traditional shell theory cannot adequately such behavior. The formulation is developed from the weak form of the local equations for linear momentum balance, weighted by an appropriate tensor. Different choices for this tensor lead to both the traditional shell equations corresponding to linear and angular momentum balance, as well as the additional higher-order representation for the squeezing deformation. In addition, conjugate strains for the shell forces are derived from the deformation power, as presented by Libai and Simmonds. Finally, the predictions from this approach are compared against predictions from the finite element code abaqus for a uniform beam subject to transverse applied loads. The current geometrically exact shell model correctly predicts the transverse shell force through the thickness of the beamshell and is able to describe problems that admit receding contact.

References

References
1.
Dundurs
,
J.
, and
Stippes
,
M.
,
1970
, “
Role of Elastic Constants in Certain Contact Problems
,”
ASME J. Appl. Mech.
,
37
(
4
), pp.
965
970
. 10.1115/1.3408725
2.
Keer
,
L. M.
,
Dundurs
,
J.
, and
Tsai
,
K. C.
,
1972
, “
Problems Involving a Receding Contact Between a Layer and a Half Space
,”
ASME J. Appl. Mech.
,
39
(
4
), pp.
1115
1120
. 10.1115/1.3422839
3.
Ahn
,
Y. J.
, and
Barber
,
J. R.
,
2008
, “
Response of Frictional Receding Contact Problems
,”
Int. J. Mech. Sci.
,
50
(
10–11
), pp.
1519
1525
. 10.1016/j.ijmecsci.2008.08.003
4.
Barber
,
J. R.
,
2018
,
Contact Mechanics (Volume 250 of Solid Mechanics and Its Applications)
.
Springer Nature
,
New York
.
5.
Filon
,
L. N. G.
,
1903
, “
On an Approximate Solution for the Bending of a Beam of Rectangular Cross-Section Under Any System of Load
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
,
206A
(
331–345
), pp.
63
155
.
6.
Coker
,
E. G.
,
Filon
,
L. N. G.
, and
Turner Jessop
,
H.
,
1957
,
A Treatise on Photo-Elasticity
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
7.
Tsai
,
K. C.
,
Dundurs
,
J.
, and
Keer
,
L. M.
,
1974
, “
Elastic Layer Pressed Against a Half Space
,”
ASME J. Appl. Mech.
,
41
(
3
), pp.
703
707
. 10.1115/1.3423375
8.
Gaul
,
L.
, and
Lenz
,
J.
,
1997
, “
Nonlinear Dynamics of Structures Assembled by Bolted Joints
,”
Acta Mech.
,
125
(
1–4
), pp.
169
181
. 10.1007/BF01177306
9.
Heinstein
,
M. W.
, and
Segalman
,
D. J.
,
2002
, “
Bending Effects in the Frictional Energy Dissipation in Lap Joints
,”
Sandia National Laboratories
,
Albuquerque, NM
,
Technical Report No. SAND2002–0083
.
10.
Menq
,
C.-H.
,
Bielak
,
J.
, and
Griffin
,
J. H.
,
1986
, “
The Influence of Microslip on Vibratory Response, Part I: A New Microslip Model
,”
J. Sound Vib.
,
107
(
2
), pp.
279
293
. 10.1016/0022-460X(86)90238-5
11.
Dane Quinn
,
D.
, and
Segalman
,
Daniel J.
,
2005
, “
Using Series-Series Iwan-Type Models for Understanding Joint Dynamics
,”
ASME J. Appl. Mech.
,
72
(
5
), pp.
778
784
. 10.1115/1.1875552
12.
Miller
,
J. D.
, and
Dane Quinn
,
D.
,
2009
, “
A Two-Sided Interface Model for Dissipation in Structural Systems With Frictional Joints
,”
J. Sound Vib.
,
321
(
1–2
), pp.
201
219
. 10.1016/j.jsv.2008.09.037
13.
Dane Quinn
,
D.
,
2012
, “
Modal Analysis of Jointed Structures
,”
J. Sound Vib.
,
331
(
1
), pp.
81
93
. 10.1016/j.jsv.2011.08.017
14.
Segalman
,
D. J.
,
2001
, “
An Initial Overview of Iwan Modeling for Mechanical Joints
,”
Sandia National Laboratories
,
Albuquerque, NM
,
Technical Report No. SAND2001–0811
.
15.
Song
,
Y.
,
Hartwigsen
,
C. J.
,
McFarland
,
D. M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2004
, “
Simulation of Dynamics of Beam Structures With Bolted Joints Using Adjusted Iwan Beam Elements
,”
J. Sound Vib.
,
273
(
1–2
), pp.
249
276
. 10.1016/S0022-460X(03)00499-1
16.
Segalman
,
D. J.
,
2006
, “
Modelling Joint Friction in Structural Dynamics
,”
Struct. Control Health Monitor.
,
13
(
1
), pp.
430
453
. 10.1002/stc.119
17.
Deaner
,
B. J.
,
Allen
,
M. S.
,
Starr
,
M. J.
,
Segalman
,
D. J.
, and
Sumali
,
H.
,
2015
, “
Application of Viscous and Iwan Modal Damping Methods to Experimental Measurements From Bolted Structures
,”
ASME J. Vib. Acoust.
,
137
(
2
), p.
021012
. 10.1115/1.4029074
18.
Brink
,
A. R.
, and
Dane Quinn
,
D.
,
2016
, “
Shear Effects on Energy Dissipation From an Elastic Beam on a Rigid Foundation
,”
ASME J. Appl. Mech.
,
83
(
1
), p.
011004
. 10.1115/1.4031764
19.
Alijani
,
F.
, and
Amabili
,
M.
,
2014
, “
Non-Linear Static Bending and Forced Vibration of Rectangular Plates Retaining Non-Linearities in Rotations and Thickness Deformation
,”
Int. J. Non-Linear Mech.
,
67
, pp.
394
404
. 10.1016/j.ijnonlinmec.2014.10.003
20.
Essenberg
,
F.
,
1962
, “
Shear Deformation in Beams on Elastic Foundations
,”
ASME J. Appl. Mech.
,
29
(
2
), pp.
313
317
. 10.1115/1.3640547
21.
Libai
,
A.
, and
Simmonds
,
J. G.
,
1998
,
The Nonlinear Theory of Elastic Shells
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
22.
Antman
,
S. S.
,
1995
,
Nonlinear Problems of Elasticity
(
Number 107 in Applied Mathematical Sciences
),
Springer-Verlag
,
New York
.
23.
Coleman
,
B. D.
, and
Noll
,
W.
,
1963
, “
The Thermodynamics of Elastic Materials With Heat Conduction and Viscosity
,”
Arch. Rational Mech. Anal.
,
13
(
1
), pp.
167
178
. 10.1007/BF01262690
24.
Cowper
,
G. R.
,
1966
, “
The Shear Coefficient in Timoshenko’s Beam Theory
,”
ASME J. Appl. Mech.
,
33
(
2
), pp.
335
340
. 10.1115/1.3625046
25.
Hutchinson
,
J. R.
,
2001
, “
Shear Coefficients for Timoshenko Beam Theory
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
87
92
. 10.1115/1.1349417
26.
Couchaux
,
M.
,
Hjiaj
,
M.
, and
Ryan
,
I.
,
2015
, “
Enriched Beam Model for Slender Prismatic Solids in Contact With a Rigid Foundation
,”
Int. J. Mech. Sci.
,
93
, pp.
181
190
. 10.1016/j.ijmecsci.2014.12.012
27.
Baluch
,
M. H.
,
Azad
,
A. K.
, and
Khidir
,
M. A.
,
1984
, “
Technical Theory of Beams With Normal Strain
,”
J. Eng. Mech.
,
110
(
8
), pp.
1233
1237
. 10.1061/(ASCE)0733-9399(1984)110:8(1233)
28.
Reddy
,
J. N.
,
1984
, “
A Simple Higher-Order Theory for Laminated Composite Plates
,”
ASME J. Appl. Mech.
,
51
(
4
), pp.
745
752
. 10.1115/1.3167719
You do not currently have access to this content.