Abstract

In this work, we have studied the uniaxial tension behaviors of the silicone–carbon nanotube (CNT) laminated structure (SCLS) with the load capacity of the CNT film comparable to that of silicone rubber, based on which a theoretical model is proposed to explore the underlying mechanism. The uniaxial tension behaviors of SCLS can be clearly divided into three stages corresponding to the uniform deformation of silicone rubber and CNT film, continuous fracture of CNT film, and uniaxial tension of silicone rubber, respectively. A zigzag plateau stress is observed in stage II. Indeed, the CNT film can act as a pinning ligament to constrain the deformation of silicone rubber, while its continuous fracture can gradually release the deformability of silicone rubber which is beneficial to increase the toughness of SCLS. By considering the in-plane tension stress of the CNT film and interface shear stress transfer, a continuous fracture and pinning model is proposed which can describe the uniaxial tension behaviors of SCLS very well. The results presented herein may shed useful insights for the design and optimization of the film-substrate based stretchable electronics.

References

References
1.
Batra
,
R. C.
, and
Gupta
,
S. S.
,
2008
, “
Wall Thickness and Radial Breathing Modes of Single-Walled Carbon Nanotubes
,”
ASME J. Appl. Mech.
,
75
(
6
), pp.
1949
1955
. 10.1115/1.2965370
2.
Shen
,
L.
, and
Li
,
J.
,
2005
, “
Transversely Isotropic Elastic Properties of Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
,
71
(
3
), p.
035412
. 10.1103/PhysRevB.71.035412
3.
Tsai
,
J.-L.
,
Tzeng
,
S.-H.
, and
Chiu
,
Y.-T.
,
2010
, “
Characterizing Elastic Properties of Carbon Nanotubes/Polyimide Nanocomposites Using Multi-Scale Simulation
,”
Compos. Part B: Eng.
,
41
(
1
), pp.
106
115
. 10.1016/j.compositesb.2009.06.003
4.
Cheng
,
H.-C.
,
Liu
,
Y.-L.
,
Hsu
,
Y.-C.
, and
Chen
,
W.-H.
,
2009
, “
Atomistic-Continuum Modeling for Mechanical Properties of Single-Walled Carbon Nanotubes
,”
Int. J. Solids Struct.
,
46
(
7–8
), pp.
1695
1704
. 10.1016/j.ijsolstr.2008.12.013
5.
Rafiee
,
M. A.
,
Rafiee
,
J.
,
Wang
,
Z.
,
Song
,
H.
,
Yu
,
Z.-Z.
, and
Koratkar
,
N.
,
2009
, “
Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content
,”
ACS Nano
,
3
(
12
), pp.
3884
3890
. 10.1021/nn9010472
6.
Chen
,
Z.
,
Augustyn
,
V.
,
Wen
,
J.
,
Zhang
,
Y.
,
Shen
,
M.
,
Dunn
,
B.
, and
Lu
,
Y.
,
2011
, “
High-Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites
,”
Adv. Mater.
,
23
(
6
), pp.
791
795
. 10.1002/adma.201003658
7.
Thostenson
,
E. T.
, and
Chou
,
T.-W.
,
2014
, “
Corrigendum: ‘On the Elastic Properties of Carbon Nanotube-Based Composites: Modelling and Characterization’ (2003 J. Phys. D: Appl. Phys. 36 573)
,”
ASME J. Phys. D: Appl. Phys.
,
47
(
2
), p.
079501
. 10.1088/0022-3727/47/7/079501
8.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
. 10.1126/science.1182383
9.
Raju
,
A. P. A.
,
Lewis
,
A.
,
Derby
,
B.
,
Young
,
R. J.
,
Kinloch
,
I. A.
,
Zan
,
R.
, and
Novoselov
,
K. S.
,
2014
, “
Wide-Area Strain Sensors Based Upon Graphene-Polymer Composite Coatings Probed by Raman Spectroscopy
,”
Adv. Funct. Mater.
,
24
(
19
), pp.
2865
2874
. 10.1002/adfm.201302869
10.
Huitema
,
E.
,
Gelinck
,
G.
,
van Lieshout
,
P.
,
van Veenendaal
,
E.
, and
Touwslager
,
F.
,
2005
, “
Flexible Electronic-Paper Active-Matrix Displays
,”
ASME J. Soc. Inf. Disp.
,
13
(
3
), p.
181
. 10.1889/1.2012602
11.
Kim
,
D.-H.
,
Viventi
,
J.
,
Amsden
,
J. J.
,
Xiao
,
J.
,
Vigeland
,
L.
,
Kim
,
Y.-S.
,
Blanco
,
J. A.
,
Panilaitis
,
B.
,
Frechette
,
E. S.
,
Contreras
,
D.
,
Kaplan
,
D. L.
,
Omenetto
,
F. G.
,
Huang
,
Y.
,
Hwang
,
K.-C.
,
Zakin
,
M. R.
,
Litt
,
B.
, and
Rogers
,
J. A.
,
2010
, “
Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-Integrated Electronics
,”
Nat. Mater.
,
9
(
6
), pp.
511
517
. 10.1038/nmat2745
12.
Zhao
,
X.
,
Hayner
,
C. M.
,
Kung
,
M. C.
, and
Kung
,
H. H.
,
2011
, “
Flexible Holey Graphene Paper Electrodes With Enhanced Rate Capability for Energy Storage Applications
,”
ACS Nano
,
5
(
11
), pp.
8739
8749
. 10.1021/nn202710s
13.
Yan
,
C.
,
Wang
,
J.
,
Wang
,
X.
,
Kang
,
W.
,
Cui
,
M.
,
Foo
,
C. Y.
, and
Lee
,
P. S.
,
2014
, “
An Intrinsically Stretchable Nanowire Photodetector With a Fully Embedded Structure
,”
Adv. Mater.
,
26
(
6
), pp.
943
950
. 10.1002/adma.201304226
14.
Qian
,
H.
,
Greenhalgh
,
E. S.
,
Shaffer
,
M. S. P.
, and
Bismarck
,
A.
,
2010
, “
Carbon Nanotube-Based Hierarchical Composites: A Review
,”
ASME J. Mater. Chem.
,
20
(
23
), p.
4751
. 10.1039/c000041h
15.
Li
,
Y. L.
,
Kinloch
,
I. A.
, and
Windle
,
A. H.
,
2004
, “
Direct Spinning of Carbon Nanotube Fibers From Chemical Vapor Deposition Synthesis
,”
Science
,
304
(
5668
), pp.
276
278
. 10.1126/science.1094982
16.
Downs
,
W. B.
, and
Baker
,
R. T. K.
,
1991
, “
Novel Carbon Fiber-Carbon Filament Structures
,”
Carbon
,
29
(
8
), pp.
1173
1179
. 10.1016/0008-6223(91)90035-H
17.
Matthews
,
F. L.
, and
Rawlings
,
R. D.
,
1999
, “Strength of Unidirectional Composites and Laminates,”
Composite Materials
,
J. M.
Hodginson
, ed.,
Woodhead Publishing
,
Cambridge
, pp.
269
286
.
18.
Jelf
,
P. M.
, and
Fleck
,
N. A.
,
1993
, “
Compression Failure Mechanisms in Unidirectional Composites
,”
Composites
,
24
(
7
), p.
594
. 10.1016/0010-4361(93)90290-o
19.
Tong
,
L.
,
Mouritz
,
A.
, and
Bannister
,
M.
,
2002
,
3D Fibre Reinforced Polymer Composites
,
Elsevier
,
Oxford
.
20.
Fan
,
Z.
,
Yan
,
J.
,
Zhi
,
L.
,
Zhang
,
Q.
,
Wei
,
T.
,
Feng
,
J.
,
Zhang
,
M.
,
Qian
,
W.
, and
Wei
,
F.
,
2010
, “
A Three-Dimensional Carbon Nanotube/Graphene Sandwich and its Application as Electrode in Supercapacitors
,”
Adv. Mater.
,
22
(
33
), pp.
3723
3728
. 10.1002/adma.201001029
21.
Tung
,
V. C.
,
Chen
,
L.-M.
,
Allen
,
M. J.
,
Wassei
,
J. K.
,
Nelson
,
K.
,
Kaner
,
R. B.
, and
Yang
,
Y.
,
2009
, “
Low-Temperature Solution Processing of Graphene−Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors
,”
Nano Lett.
,
9
(
5
), pp.
1949
1955
. 10.1021/nl9001525
22.
Kaempgen
,
M.
,
Duesberg
,
G. S.
, and
Roth
,
S.
,
2005
, “
Transparent Carbon Nanotube Coatings
,”
Appl. Surf. Sci.
,
252
(
2
), pp.
425
429
. 10.1016/j.apsusc.2005.01.020
23.
Pei
,
S.
,
Du
,
J.
,
Zeng
,
Y.
,
Liu
,
C.
, and
Cheng
,
H.-M.
,
2009
, “
The Fabrication of a Carbon Nanotube Transparent Conductive Film by Electrophoretic Deposition and Hot-Pressing Transfer
,”
Nanotechnology
,
20
(
23
), p.
235707
. 10.1088/0957-4484/20/23/235707
24.
Sierros
,
K. A.
,
Hecht
,
D. S.
,
Banerjee
,
D. A.
,
Morris
,
N. J.
,
Hu
,
L.
,
Irvin
,
G. C.
,
Lee
,
R. S.
, and
Cairns
,
D. R.
,
2010
, “
Durable Transparent Carbon Nanotube Films for Flexible Device Components
,”
Thin Solid Films
,
518
(
23
), pp.
6977
6983
. 10.1016/j.tsf.2010.07.026
25.
Zhang
,
Y.
,
Sheehan
,
C. J.
,
Zhai
,
J.
,
Zou
,
G.
,
Luo
,
H.
,
Xiong
,
J.
,
Zhu
,
Y. T.
, and
Jia
,
Q. X.
,
2010
, “
Polymer-Embedded Carbon Nanotube Ribbons for Stretchable Conductors
,”
Adv. Mater.
,
22
(
28
), pp.
3027
3031
. 10.1002/adma.200904426
26.
Zhu
,
Y.
, and
Xu
,
F.
,
2012
, “
Buckling of Aligned Carbon Nanotubes as Stretchable Conductors: A New Manufacturing Strategy
,”
Adv. Mater.
,
24
(
8
), pp.
1073
1077
. 10.1002/adma.201103382
27.
Zhu
,
Y.
,
Xu
,
F.
,
Wang
,
X.
, and
Zhu
,
Y.
,
2012
, “
Wavy Ribbons of Carbon Nanotubes for Stretchable Conductors
,”
Adv. Funct. Mater.
,
22
(
6
), pp.
1279
1283
. 10.1002/adfm.201102032
28.
Xu
,
H.
,
Tong
,
X.
,
Zhang
,
Y.
,
Li
,
Q.
, and
Lu
,
W.
,
2016
, “
Mechanical and Electrical Properties of Laminated Composites Containing Continuous Carbon Nanotube Film Interleaves
,”
Compos. Sci. Technol.
,
127
, pp.
113
118
. 10.1016/j.compscitech.2016.02.032
29.
Gent
,
A. N.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
. 10.5254/1.3538357
30.
Treloar
,
L. R. G.
, and
Montgomery
,
D. J.
,
1959
, “
The Physics of Rubber Elasticity
,”
Phys. Today
,
12
(
2
), pp.
32
34
. 10.1063/1.3060678
31.
Ajayan
,
B. P. M.
,
Schadler
,
L. S.
,
Giannaris
,
C.
, and
Rubio
,
A.
,
2000
, “
Single-Walled Carbon Nanotube-Polymer Composites: Strength and Weakness
,”
Adv. Mater.
,
12
(
10
), pp.
750
753
. 10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6
32.
Lau
,
K.
, and
Shi
,
S.
,
2002
, “
Failure Mechanisms of Carbon Nanotube/Epoxy Composites Pretreated in Different Temperature Environments
,”
Carbon
,
40
(
15
), pp.
2965
2968
. 10.1016/S0008-6223(02)00245-2
33.
Li
,
C.
, and
Chou
,
T.-W.
,
2003
, “
Multiscale Modeling of Carbon Nanotube Reinforced Polymer Composites
,”
ASME J. Nanosci. Nanotechnol.
,
3
(
5
), pp.
423
430
. 10.1166/jnn.2003.233
34.
Gou
,
J.
,
Minaie
,
B.
,
Wang
,
B.
,
Liang
,
Z.
, and
Zhang
,
C.
,
2004
, “
Computational and Experimental Study of Interfacial Bonding of Single-Walled Nanotube Reinforced Composites
,”
Comput. Mater. Sci.
,
31
(
3–4
), pp.
225
236
. 10.1016/j.commatsci.2004.03.002
35.
Jiang
,
L. Y.
,
Huang
,
Y.
,
Jiang
,
H.
,
Ravichandran
,
G.
,
Gao
,
H.
,
Hwang
,
K. C.
, and
Liu
,
B.
,
2006
, “
A Cohesive Law for Carbon Nanotube/Polymer Interfaces Based on the van der Waals Force
,”
ASME J. Mech. Phys. Solids
,
54
(
11
), pp.
2436
2452
. 10.1016/j.jmps.2006.04.009
36.
Poblete
,
F. R.
, and
Zhu
,
Y.
,
2019
, “
Interfacial Shear Stress Transfer at Nanowire-Polymer Interfaces With van der Waals Interactions and Chemical Bonding
,”
ASME J. Mech. Phys. Solids
,
127
, pp.
191
207
. 10.1016/j.jmps.2019.03.013
37.
Feng
,
X.
,
Ma
,
Z.
,
MacArthur
,
J. V.
,
Giuffre
,
C. J.
,
Bastawros
,
A. F.
, and
Hong
,
W.
,
2016
, “
A Highly Stretchable Double-Network Composite
,”
Soft Matter
,
12
(
44
), pp.
8999
9006
. 10.1039/C6SM01781A
You do not currently have access to this content.