Abstract

Practical engineering designs typically involve many load cases. For topology optimization with many deterministic load cases, a large number of linear systems of equations must be solved at each optimization step, leading to an enormous computational cost. To address this challenge, we propose a mirror descent stochastic approximation (MD-SA) framework with various step size strategies to solve topology optimization problems with many load cases. We reformulate the deterministic objective function and gradient into stochastic ones through randomization, derive the MD-SA update, and develop algorithmic strategies. The proposed MD-SA algorithm requires only low accuracy in the stochastic gradient and thus uses only a single sample per optimization step (i.e., the sample size is always one). As a result, we reduce the number of linear systems to solve per step from hundreds to one, which drastically reduces the total computational cost, while maintaining a similar design quality. For example, for one of the design problems, the total number of linear systems to solve and wall clock time are reduced by factors of 223 and 22, respectively.

References

References
1.
Bendsoe
,
M. P.
,
Guedes
,
J. M.
,
Haber
,
R. B.
,
Pedersen
,
P.
, and
Taylor
,
J. E.
,
1994
, “
An Analytical Model to Predict Optimal Material Properties in the Context of Optimal Structural Design
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
930
937
. 10.1115/1.2901581
2.
Sigmund
,
O.
, and
Torquato
,
S.
,
1997
, “
Design of Materials With Extreme Thermal Expansion Using a Three-Phase Topology Optimization Method
,”
J. Mech. Phys. Solids
,
45
(
6
), pp.
1037
1067
. 10.1016/S0022-5096(96)00114-7
3.
Wang
,
F.
,
Sigmund
,
O.
, and
Jensen
,
J. S.
,
2014
, “
Design of Materials With Prescribed Nonlinear Properties
,”
J. Mech. Phys. Solids
,
69
, pp.
156
174
. 10.1016/j.jmps.2014.05.003
4.
Clausen
,
A.
,
Wang
,
F.
,
Jensen
,
J. S.
,
Sigmund
,
O.
, and
Lewis
,
J. A.
,
2015
, “
Topology Optimized Architectures With Programmable Poisson’s Ratio Over Large Deformations
,”
Adv. Mater.
,
27
(
37
), pp.
5523
5527
. 10.1002/adma.201502485
5.
Ma
,
Z.-D.
,
Kikuchi
,
N.
,
Pierre
,
C.
, and
Raju
,
B.
,
2005
, “
Multidomain Topology Optimization for Structural and Material Designs
,”
J. Appl. Mech.
,
73
(
4
), pp.
565
573
.
6.
Aage
,
N.
,
Andreassen
,
E.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2017
, “
Giga-Voxel Computational Morphogenesis for Structural Design
,”
Nature
,
550
(
7674
), pp.
84
86
. 10.1038/nature23911
7.
Liu
,
C.
,
Du
,
Z.
,
Zhang
,
W.
,
Zhu
,
Y.
, and
Guo
,
X.
,
2017
, “
Additive Manufacturing-Oriented Design of Graded Lattice Structures Through Explicit Topology Optimization
,”
ASME J. Appl. Mech.
,
84
(
8
), p.
081008
. 10.1115/1.4036941
8.
Zhang
,
X. S.
,
Paulino
,
G. H.
, and
Ramos
,
A. S.
, Jr.,
2018
, “
Multi-Material Topology Optimization With Multiple Volume Constraints: A Ground Structure Approach Involving Material Nonlinearity
,”
Struct. Multidisc. Optim.
,
57
, pp.
161
182
. 10.1007/s00158-017-1768-3
9.
Sutradhar
,
A.
,
Paulino
,
G.
,
Miller
,
M.
, and
Nguyen
,
T.
,
2010
, “
Topological Optimization for Designing Patient-specific Large Craniofacial Segmental Bone Replacements
,”
Proc. Natl. Acad. Sci. USA
,
107
(
30
), pp.
13222
13227
. 10.1073/pnas.1001208107
10.
Nanthakumar
,
S.
,
Lahmer
,
T.
,
Zhuang
,
X.
,
Park
,
H. S.
, and
Rabczuk
,
T.
,
2016
, “
Topology Optimization of Piezoelectric Nanostructures
,”
J. Mech. Phys. Solids
,
94
, pp.
316
335
. 10.1016/j.jmps.2016.03.027
11.
Yun
,
K.-S.
, and
Youn
,
S.-K.
,
2018
, “
Microstructural Topology Optimization of Viscoelastic Materials of Damped Structures Subjected to Dynamic Loads
,”
Int. J. Solids. Struct.
,
147
, pp.
67
79
. 10.1016/j.ijsolstr.2018.04.022
12.
Chen
,
W.
, and
Huang
,
X.
,
2019
, “
Topological Design of 3D Chiral Metamaterials Based on Couple-Stress Homogenization
,”
J. Mech. Phys. Solids
,
131
, pp.
372
386
. 10.1016/j.jmps.2019.07.014
13.
Aguiló
,
M.
,
Blacker
,
T.
, and
Paulino
,
G.
,
2019
,
USACM Thematic Conference Topology Optimization Roundtable: Challenge Problem Competition
,
SIMULIA from Dassault Systèmes
, http://paulino.ce.gatech.edu/TopOpt%20Workshop%20Website/challenge.php, Accessed March 10, 2019.
14.
Diaz
,
A. R.
, and
Bendsœ
,
M. P.
,
1992
, “
Shape Optimization of Structures for Multiple Loading Conditions Using a Homogenization Method
,”
Struct. Optim.
,
4
(
1
), pp.
17
22
. 10.1007/BF01894077
15.
Bendsœ
,
M. P.
,
Ben-Tal
,
A.
, and
Zowe
,
J.
,
1994
, “
Optimization Methods for Truss Geometry and Topology Design
,”
Struct. Optim.
,
7
(
3
), pp.
141
159
. 10.1007/BF01742459
16.
Bendsœ
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods, and Applications
,
Springer
,
Berlin, Germany
.
17.
Achtziger
,
W.
,
1998
, “
Multiple-Load Truss Topology and Sizing Optimization: Some Properties of Minimax Compliance
,”
J. Optim. Theory Appl.
,
98
(
2
), pp.
255
280
. 10.1023/A:1022637216104
18.
Zhang
,
X. S.
,
de Sturler
,
E.
, and
Paulino
,
G. H.
,
2017
, “
Stochastic Sampling for Deterministic Structural Topology Optimization With Many Load Cases: Density-Based and Ground Structure Approaches
,”
Comput. Methods Appl. Mech. Eng.
,
325
, pp.
463
487
. 10.1016/j.cma.2017.06.035
19.
Haber
,
E.
,
Chung
,
M.
, and
Herrmann
,
F.
,
2012
, “
An Effective Method for Parameter Estimation With PDE Constraints With Multiple Right-hand Sides
,”
SIAM J. Optim.
,
22
(
3
), pp.
739
757
. 10.1137/11081126X
20.
Roosta-Khorasani
,
F.
, and
Ascher
,
U.
,
2015
, “
Improved Bounds on Sample Size for Implicit Matrix Trace Estimators
,”
Found. Comput. Math.
,
15
(
5
), pp.
1187
1212
. 10.1007/s10208-014-9220-1
21.
Neelamani
,
R.
,
Krohn
,
C. E.
,
Krebs
,
J. R.
,
Romberg
,
J. K.
,
Deffenbaugh
,
M.
, and
Anderson
,
J. E.
,
2010
, “
Efficient Seismic Forward Modeling Using Simultaneous Random Sources and Sparsity
,”
Geophysics
,
75
(
6
), pp.
WB15
WB27
. 10.1190/1.3509470
22.
Nemirovski
,
A.
,
Juditsky
,
A.
,
Lan
,
G.
, and
Shapiro
,
A.
,
2009
, “
Robust Stochastic Approximation Approach to Stochastic Programming
,”
SIAM J. Optim.
,
19
(
4
), pp.
1574
1609
. 10.1137/070704277
23.
Bottou
,
L.
,
Curtis
,
F. E.
, and
Nocedal
,
J.
,
2018
, “
Optimization Methods for Large-scale Machine Learning
,”
Siam Rev.
,
60
(
2
), pp.
223
311
. 10.1137/16M1080173
24.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge
.
25.
Nemirovski
,
A.
, and
Yudin
,
D.
,
1978
, “
On Cezari’s Convergence of the Steepest Descent Method for Approximating Saddle Point of Convex-Concave Functions
,”
Dokl. Akad. Nauk SSSR
,
239
, pp.
1056
1059
.
26.
Nemirovski
,
A.
, and
Yudin
,
D.
,
1983
,
Problem Complexity and Method Efficiency in Optimization
,
John Wiley
,
New York
.
27.
Bourdin
,
B.
,
2001
, “
Filters in Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
50
(
9
), pp.
2143
2158
. 10.1002/nme.116
28.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design As a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
. 10.1007/BF01650949
29.
Zhou
,
M.
, and
Rozvany
,
G.
,
1991
, “
The COC Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
(
1–3
), pp.
309
336
. 10.1016/0045-7825(91)90046-9
30.
Petersson
,
J.
,
1999
, “
A Finite Element Analysis of Optimal Variable Thickness Sheets
,”
SIAM J. Numer. Anal.
,
36
(
6
), pp.
1759
1778
. 10.1137/S0036142996313968
31.
Hutchinson
,
M.
,
1989
, “
A Stochastic Estimator of the Trace of the Influence Matrix for Laplacian Smoothing Splines
,”
Commun. Stat. Simul. Comput.
,
18
(
3
), pp.
1059
1076
. 10.1080/03610918908812806
32.
Avron
,
H.
, and
Toledo
,
S.
,
2011
, “
Randomized Algorithms for Estimating the Trace of An Implicit Symmetric Positive Semi-Definite Matrix
,”
J. ACM
,
58
(
2
), pp.
1
34
. 10.1145/1944345.1944349
33.
Dilworth
,
S. J.
, and
Montgomery-Smith
,
S. J.
,
1993
, “
The Distribution of Vector-Valued Rademacher Series
,”
Ann. Probab.
,
21
(
4
), pp.
2046
2052
.
34.
Shalev-Shwartz
,
S.
,
2011
, “
Online Learning and Online Convex Optimization
,”
Found. Trends Mach. Learning
,
4
(
2
), pp.
107
194
. 10.1561/2200000018
35.
Shapiro
,
A.
,
Dentcheva
,
D.
, and
Ruszczyński
,
A.
,
2009
,
Lectures on Stochastic Programming: Modeling and Theory
,
SIAM
,
Philadelphia
.
36.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, Jr.
, and
Vecchi
,
M. P.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
,
220
(
4598
), pp.
671
680
. 10.1126/science.220.4598.671
37.
Salamon
,
P.
,
Sibani
,
P.
, and
Frost
,
R.
,
2002
,
Facts, Conjectures, and Improvements for Simulated Annealing
,
SIAM
,
Philadelphia
.
38.
Robbins
,
H.
, and
Monro
,
S.
,
1951
, “
A Stochastic Approximation Method
,”
Ann. Math. Stat.
,
22
(
3
), pp.
400
407
. 10.1214/aoms/1177729586
39.
Polyak
,
B. T.
,
1990
, “
New Stochastic Approximation Type Procedure
,”
Automat. I Telemekh.
,
7
, pp.
98
107
.
40.
Polyak
,
B. T.
, and
Juditsky
,
A. B.
,
1992
, “
Acceleration of Stochastic Approximation by Averaging
,”
SIAM J. Control Optim.
,
30
(
4
), pp.
838
855
. 10.1137/0330046
41.
Kilmer
,
M.
, and
de Sturler
,
E.
,
2006
, “
Recycling Subspace Information for Diffuse Optical Tomography
,”
SIAM J. Sci. Comput.
,
27
(
6
), pp.
2140
2166
. 10.1137/040610271
42.
Wang
,
S.
,
de Sturler
,
E.
, and
Paulino
,
G. H.
,
2007
, “
Large-Scale Topology Optimization Using Preconditioned Krylov Subspace Methods With Recycling
,”
Int. J. Numer. Methods Eng.
,
69
(
12
), pp.
2441
2468
. 10.1002/nme.1798
43.
Mello
,
L. A. M.
,
de Sturler
,
E.
,
Paulino
,
G. H.
, and
Silva
,
E. C. N.
,
2010
, “
Recycling Krylov Subspaces for Efficient Large-Scale Electrical Impedance Tomography
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
49–52
), pp.
3101
3110
. 10.1016/j.cma.2010.06.001
44.
Paige
,
C. C.
, and
Saunders
,
M. A.
,
1975
, “
Solutions of Sparse Indefinite Systems of Linear Equations
,”
SIAM J. Numer. Anal.
,
12
(
4
), pp.
617
629
. 10.1137/0712047
45.
Saad
,
Y.
,
2003
,
Iterative Methods for Sparse Linear Systems
, 2nd ed.,
SIAM
,
Philadelphia
.
46.
Eiermann
,
M.
,
Ernst
,
O. G.
, and
Schneider
,
O.
,
2000
, “
Analysis of Acceleration Strategies for Restarted Minimal Residual Methods
,”
J. Comput. Appl. Math.
,
123
(
1–2
), pp.
261
292
. 10.1016/S0377-0427(00)00398-8
47.
Hestenes
,
M. R.
, and
Stiefel
,
E.
,
1952
, “
Methods of Conjugate Gradients for Solving Linear Systems
,”
J. Res. Natl. Bureau Stand.
,
49
(
6
), pp.
409
436
. 10.6028/jres.049.044
48.
Meijerink
,
J.
, and
Van der Vorst
,
H.
,
1977
, “
An Iterative Solution Method for Linear Equations Systems of Which the Coefficient Matrix is a Symmetric M-matrix
,”
Math. Comput.
,
31
(
13
), pp.
148
162
.
49.
Gaul
,
A.
, and
Schlömer
,
N.
,
2015
, “
Preconditioned Recycling Krylov Subspace Methods for Self-Adjoint Problems
,”
Electron. Trans. Numer. Anal.
,
44
, pp.
522
547
.
50.
Talischi
,
C.
,
Paulino
,
G. H.
,
Pereira
,
A.
, and
Menezes
,
I. F. M.
,
2012
, “
PolyTop: A Matlab Implementation of a General Topology Optimization Framework Using Unstructured Polygonal Finite Element Meshes
,”
Struct. Multidisc. Optim.
,
45
(
3
), pp.
329
357
. 10.1007/s00158-011-0696-x
You do not currently have access to this content.