Abstract

In this paper, a contact model is proposed to predict the contact response of an incompressible neo-Hookean half-space under finite spherical indentations. The axisymmetric finite element (FE) model is created to simulate the contact behaviors. Inspired by the numerical results, the radius of the contact circle is derived. The contact force is then obtained by modifying the radius of the contact circle of the Hertz model. The format of the distribution of the contact pressure is also developed according to the Hertz model. A parameter, determined by fitting the numerical results, is introduced to characterize the effect of the indentation depth on the shape of the distribution function of the contact pressure. The newly proposed contact model is numerically validated to predict well the contact behaviors, including the contact force, the radius of the contact circle, and the distribution of the contact pressure, for the incompressible neo-Hookean half-space under spherical indentation up to the indenter radius. However, the Hertz model is verified to offer acceptable predictions of the contact behaviors for the incompressible neo-Hookean materials within the indentation depth of 0.1 times of the indenter radius.

References

References
1.
Wu
,
C.-E.
,
Lin
,
K.-H.
, and
Juang
,
J.-Y.
,
2016
, “
Hertzian Load–Displacement Relation Holds for Spherical Indentation on Soft Elastic Solids Undergoing Large Deformations
,”
Tribol. Int.
,
97
, pp.
71
76
. 10.1016/j.triboint.2015.12.034
2.
Dintwa
,
E.
,
Tijskens
,
E.
, and
Ramon
,
H.
,
2008
, “
On the Accuracy of the Hertz Model to Describe the Normal Contact of Soft Elastic Spheres
,”
Granul. Matter
,
10
(
3
), pp.
209
221
. 10.1007/s10035-007-0078-7
3.
Fischer-Cripps
,
A.
, and
Nicholson
,
D.
,
2004
, “
Nanoindentation. Mechanical Engineering Series
,”
ASME Appl. Mech. Rev.
,
57
(
2
), pp.
B12
B12
. 10.1115/1.1704625
4.
Zhang
,
Q.
, and
Yang
,
Q. S.
,
2017
, “
Effects of Large Deformation and Material Nonlinearity on Spherical Indentation of Hyperelastic Soft Materials
,”
Mech. Res. Commun.
,
84
, pp.
55
59
. 10.1016/j.mechrescom.2017.06.003
5.
Yoffe
,
E. H.
,
1984
, “
Modified Hertz Theory for Spherical Indentation
,”
Philos. Mag. A
,
50
(
6
), pp.
813
828
. 10.1080/01418618408237539
6.
Choi
,
I.
, and
Shield
,
R. T.
,
1981
, “
Second-Order Effects in Problems for a Class of Elastic Materials
,”
Z. Angew. Math. Phys.
,
32
(
4
), pp.
361
381
. 10.1007/BF00955616
7.
Sabin
,
G. C. W.
, and
Kaloni
,
P. N.
,
1989
, “
Contact Problem of a Rigid Indentor With Rotational Friction in Second Order Elasticity
,”
Int. J. Eng. Sci.
,
27
(
3
), pp.
203
217
. 10.1016/0020-7225(89)90110-9
8.
Giannakopoulos
,
A. E.
, and
Triantafyllou
,
A.
,
2007
, “
Spherical Indentation of Incompressible Rubber-Like Materials
,”
J. Mech. Phys. Solids
,
55
(
6
), pp.
1196
1211
. 10.1016/j.jmps.2006.11.010
9.
Liu
,
D. X.
,
Zhang
,
Z. D.
, and
Sun
,
L. Z.
,
2010
, “
Nonlinear Elastic Load–Displacement Relation for Spherical Indentation on Rubberlike Materials
,”
J. Mater. Res.
,
25
(
11
), pp.
2197
2202
. 10.1557/jmr.2010.0285
10.
Sneddon
,
I. N.
,
1965
, “
The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile
,”
Int. J. Eng. Sci.
,
3
(
1
), pp.
47
57
. 10.1016/0020-7225(65)90019-4
11.
Lin
,
D. C.
,
Dimitriadis
,
E. K.
, and
Horkay
,
F.
,
2007
, “
Elasticity of Rubber-Like Materials Measured by AFM Nanoindentation
,”
Express Polym. Lett.
,
1
(
9
), pp.
576
584
. 10.3144/expresspolymlett.2007.79
12.
Lin
,
D. C.
,
Shreiber
,
D. I.
,
Dimitriadis
,
E. K.
, and
Horkay
,
F.
,
2008
, “
Spherical Indentation of Soft Matter Beyond the Hertzian Regime: Numerical and Experimental Validation of Hyperelastic Models
,”
Biomech. Model. Mechanobiol.
,
8
(
5
), p.
345
358
. 10.1007/s10237-008-0139-9
13.
Zhang
,
M. G.
,
Cao
,
Y. P.
,
Li
,
G. Y.
, and
Feng
,
X. Q.
,
2014
, “
Spherical Indentation Method for Determining the Constitutive Parameters of Hyperelastic Soft Materials
,”
Biomech. Model. Mechanobiol.
,
13
(
1
), pp.
1
11
. 10.1007/s10237-013-0481-4
14.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
15.
Marckmann
,
G.
, and
Verron
,
E.
,
2006
, “
Comparison of Hyperelastic Models for Rubberlike Materials
,”
Rubber Chem. Technol.
,
79
(
5
), pp.
835
858
. 10.5254/1.3547969
16.
ABAQUS
,
2014
,
Analysis User's Manual, Version 6.14
,
SIMULIA Inc.
You do not currently have access to this content.