Abstract

An investigation is presented into the fracture and energetic strength scaling of soft and brittle polydimethylsiloxane (PDMS)-based elastomers. Mode I tensile fracture tests on pre-cracked specimens of various sizes are carried out with two PDMS elastomers significantly varying in their stiffness, strength, and toughness. The results are interpreted within the existing framework of the energetic type II Bazant size effect law (SEL). The SEL is found to be applicable to the PDMS elastomers despite their nonlinear stress-strain behavior. This is because the nonlinearity is rather weak, making the strain energy approximately proportional to the square of the nominal stress, similar to linear elastic materials. It is found that at the lab scale, the structural strength of both elastomers scales in a self-similar fashion with specimen size and falls on the large size asymptote of the SEL. Then, the strengths of much smaller specimens are numerically predicted using the cohesive crack model. For both elastomers, these strengths are found to fall squarely on the transitional part of the SEL, implying incomplete self-similarity and a transition to quasi-brittle fracturing. This is due to the increased dominance of the fracture process zone whose size is estimated by various methods. It is shown that if this transition is not accounted for, the structural strength can be over-predicted by 140% or even more for smaller sizes. Thus, for the first time, it is shown that soft elastomers, if weakly nonlinear, exhibit conformance to the energetic type II strength scaling laws.

References

References
1.
Mata
,
A.
,
Fleischman
,
A. J.
, and
Roy
,
S.
,
2005
, “
Characterization of Polydimethylsiloxane (pdms) Properties for Biomedical Micro/Nanosystems
,”
Biomed. Microdevices.
,
7
(
4
), pp.
281
293
. 10.1007/s10544-005-6070-2
2.
Johnston
,
I.
,
McCluskey
,
D.
,
Tan
,
C.
, and
Tracey
,
M.
,
2014
, “
Mechanical Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering
,”
J. Micromech. Microeng.
,
24
(
3
), p.
035017
. 10.1088/0960-1317/24/3/035017
3.
Bazant
,
Z. P.
,
Xi
,
Y.
, and
Reid
,
S. G.
,
1991
, “
Statistical Size Effect in Quasi-brittle Structures: I. Is Weibull Theory Applicable?
J. Engin. Mechanics
,
117
(
11
), pp.
2609
2622
. 10.1061/(ASCE)0733-9399(1991)117:11(2609)
4.
Bazant
,
Z. P.
, and
Novak
,
D.
,
2000
, “
Energetic-Statistical Size Effect in Quasibrittle Failure At Crack Initiation
,”
ACI Mater. J
,
97
(
3
), pp.
381
392
. 10.14359/9879
5.
Bažant
,
Z. P.
, and
Planas
,
J.
,
1998
,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC Press
,
Boca Raton and London
.
6.
Kirane
,
K.
,
Gonzalez
,
K.
, and
Xue
,
J.
,
2019
, “
Scaling of Structural Strength in Soft Elastomers and the Relation to Fracture Energy and Process Zone Size
,”
ASME International Mechanical Engineering Congress and Exposition
,
Salt Lake City, UT
.
7.
Bažant
,
Z. P.
,
2005
,
Scaling of Structural Strength
, 2nd ed.,
Elsevier
,
New York
.
8.
Ritchie
,
R.
,
2005
, “
Incomplete Self-similarity and Fatigue-Crack Growth
,”
Int. J. Fract.
,
132
(
3
), pp.
197
203
. 10.1007/s10704-005-2266-y
9.
Barenblatt
,
G.
, and
Botvina
,
L.
,
1980
, “
Incomplete Self-similarity of Fatigue in the Linear Range of Crack Growth
,”
Fatigue. Fract. Eng. Mater. Struct.
,
3
(
3
), pp.
193
202
. 10.1111/j.1460-2695.1980.tb01359.x
10.
Barenblatt
,
G. I.
,
2003
,
Scaling
, vol. 34,
Cambridge University Press
,
Cambridge
.
11.
Bažant
,
Z.
, and
Kazemi
,
M.
,
1990
, “
Determination of Fracture Energy, Process Zone Length and Brittleness Number From Size Effect, With Application to Rock and Conerete
,”
Int. J. fract.
,
44
(
2
), pp.
111
131
. 10.1007/BF00047063
12.
Anderson
,
T. L.
,
2005
,
Fracture Mechanics: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
.
13.
Wendner
,
R.
,
Vorel
,
J.
,
Smith
,
J.
,
Hoover
,
C. G.
,
Bažant
,
Z. P.
, and
Cusatis
,
G.
,
2015
, “
Characterization of Concrete Failure Behavior: A Comprehensive Experimental Database for the Calibration and Validation of Concrete Models
,”
Mater. Struct.
,
48
(
11
), pp.
3603
3626
. 10.1617/s11527-014-0426-0
14.
Salviato
,
M.
,
Kirane
,
K.
,
Ashari
,
S. E.
,
Bažant
,
Z. P.
, and
Cusatis
,
G.
,
2016
, “
Experimental and Numerical Investigation of Intra-laminar Energy Dissipation and Size Effect in Two-dimensional Textile Composites
,”
Compos. Sci. Technol.
,
135
, pp.
67
75
. 10.1016/j.compscitech.2016.08.021
15.
Bažant
,
Z. P.
,
1999
, “
Size Effect on Structural Strength: A Review
,”
Archive Appl. Mech.
,
69
(
9–10
), pp.
703
725
. 10.1007/s004190050252
16.
Boué
,
T. G.
,
Harpaz
,
R.
,
Fineberg
,
J.
, and
Bouchbinder
,
E.
,
2015
, “
Failing Softly: A Fracture Theory of Highly-Deformable Materials
,”
Soft. Matter.
,
11
(
19
), pp.
3812
3821
. 10.1039/C5SM00496A
17.
Rivlin
,
R.
, and
Thomas
,
A. G.
,
1953
, “
Rupture of Rubber. I. Characteristic Energy for Tearing
,”
J. Polymer Sci.
,
10
(
3
), pp.
291
318
. 10.1002/pol.1953.120100303
18.
Greensmith
,
H.
,
1963
, “
Rupture of Rubber. X. the Change in Stored Energy on Making a Small Cut in a Test Piece Held in Simple Extension
,”
J. Appl. Polym. Sci.
,
7
(
3
), pp.
993
1002
. 10.1002/app.1963.070070316
19.
Greensmith
,
H. W.
,
1955
, “
A. Thomas, Rupture of Rubber. III. Determination of Tear Properties
,”
J. Polymer Sci.
,
18
(
88
), pp.
189
200
. 10.1002/pol.1955.120188803
20.
Gent
,
A.
, and
Wang
,
C.
,
1991
, “
Fracture Mechanics and Cavitation in Rubber-like Solids
,”
J. Mater. Sci.
,
26
(
12
), pp.
3392
3395
. 10.1007/BF01124691
21.
Lake
,
G.
, and
Thomas
,
A.
,
1967
, “
The Strength of Highly Elastic Materials
,”
Proc. R. Soc. Lond. A.
,
300
(
1460
), pp.
108
119
. 10.1098/rspa.1967.0160
22.
Brown
,
H.
,
1991
, “
A Molecular Interpretation of the Toughness of Glassy Polymers
,”
Macromolecules
,
24
(
10
), pp.
2752
2756
. 10.1021/ma00010a018
23.
Bhowmick
,
A. K.
,
1986
, “
Tear Strength of Elastomers Over a Range of Rates, Temperatures and Crosslinking: Tearing Energy Spectra
,”
J. Mater. Sci.
,
21
(
11
), pp.
3927
3932
. 10.1007/BF02431631
24.
Smith
,
T. L.
,
1977
, “
Strength of Elastorners–a Perspective
,”
Polymer Engin. Sci.
,
17
(
3
), pp.
129
143
. 10.1002/pen.760170302
25.
Persson
,
B.
,
Albohr
,
O.
,
Heinrich
,
G.
, and
Ueba
,
H.
,
2005
, “
Crack Propagation in Rubber-like Materials
,”
J. Phys.: Condens. Matter.
,
17
(
44
), p.
R1071
. 10.1088/0953-8984/17/44/R01
26.
Chen
,
C.
,
Zhang
,
H.
,
Niemczura
,
J.
,
Ravi-Chandar
,
K.
, and
Marder
,
M.
,
2011
, “
Scaling of Crack Propagation in Rubber Sheets
,”
EPL (Euro. Lett.)
,
96
(
3
), p.
36009
. 10.1209/0295-5075/96/36009
27.
Zhang
,
T.
,
Lin
,
S.
,
Yuk
,
H.
, and
Zhao
,
X.
,
2015
, “
Predicting Fracture Energies and Crack-Tip Fields of Soft Tough Materials
,”
Extreme Mech. Lett.
,
4
, pp.
1
8
. 10.1016/j.eml.2015.07.007
28.
Andrews
,
E.
,
1961
, “
Stresses At a Crack in An Elastomer
,”
Proc. Phys. Soc.
,
77
(
2
), p.
483
. 10.1088/0370-1328/77/2/333
29.
Geubelle
,
P. H.
, and
Knauss
,
W. G.
,
1994
, “
Finite Strains At the Tip of a Crack in a Sheet of Hyperelastic Material: III. General Bimaterial Case
,”
J. Elasticity
,
35
(
1–3
), pp.
139
174
. 10.1007/BF00115541
30.
Krishnan
,
V. R.
,
Hui
,
C. Y.
, and
Long
,
R.
,
2008
, “
Finite Strain Crack Tip Fields in Soft Incompressible Elastic Solids
,”
Langmuir
,
24
(
24
), pp.
14245
14253
. 10.1021/la802795e
31.
Long
,
R.
, and
Hui
,
C.-Y.
,
2015
, “
Crack Tip Fields in Soft Elastic Solids Subjected to Large Quasi-static Deformation–a Review
,”
Ext. Mech. Lett.
,
4
, pp.
131
155
. 10.1016/j.eml.2015.06.002
32.
Knowles
,
J. K.
, and
Sternberg
,
E.
,
1973
, “
An Asymptotic Finite-Deformation Analysis of the Elastostatic Field Near the Tip of a Crack
,”
J. Elasticity
,
3
(
2
), pp.
67
107
. 10.1007/BF00045816
33.
Ravichandran
,
G.
, and
Knauss
,
W.
,
1989
, “
A Finite Elastostatic Analysis of Bimaterial Interface Cracks
,”
Int. J. Fract.
,
39
(
1–3
), pp.
235
253
. 10.1007/BF00047452
34.
Long
,
R.
,
Krishnan
,
V. R.
, and
Hui
,
C.-Y.
,
2011
, “
Finite Strain Analysis of Crack Tip Fields in Incompressible Hyperelastic Solids Loaded in Plane Stress
,”
J. Mech. Phys. Solids.
,
59
(
3
), pp.
672
695
. 10.1016/j.jmps.2010.12.005
35.
Hui
,
C.-Y.
,
Bennison
,
S.
, and
Londono
,
J.
,
2003
, “
Crack Blunting and the Strength of Soft Elastic Solids
,”
Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci.
,
459
(
2034
), pp.
1489
1516
. 10.1098/rspa.2002.1057
36.
Creton
,
C.
, and
Ciccotti
,
M.
,
2016
, “
Fracture and Adhesion of Soft Materials: A Review
,”
Rep. Prog. Phys.
,
79
(
4
), p.
046601
. 10.1088/0034-4885/79/4/046601
37.
Gent
,
A.
,
2005
, “Strength of Elastomers,”
Science and Technology of Rubber
,
Elsevier
,
New York
, p.
455
495
.
38.
Roucou
,
D.
,
Diani
,
J.
,
Brieu
,
M.
, and
Mbiakop-Ngassa
,
A.
,
2019
, “
Critical Strain Energy Release Rate for Rubbers: Single Edge Notch Tension Versus Pure Shear Tests
,”
Int. J. Fract.
,
216
(
1
), pp.
31
39
. 10.1007/s10704-018-00336-8
39.
Mullins
,
L.
,
1958
, “
Rupture of Rubber. IX. Role of Hysteresis in the Tearing of Rubber
,”
Trans. Inst. Rubber Ind.
,
35
(
5
), pp.
213
222
.
40.
Ngai
,
K.
,
Capaccioli
,
S.
, and
Plazek
,
D.
,
2013
, “The Viscoelastic Behavior of Rubber and Dynamics of Blends,”
The Science and Technology of Rubber
,
Universita Di Pisa
,
Pisa
.
41.
Knauss
,
W.
,
1970
, “
Delayed Failure–the Griffith Problem for Linearly Viscoelastic Materials
,”
Int. J. Fract. Mech.
,
6
(
1
), pp.
7
20
. 10.1007/bf00183655
42.
Knauss
,
W.
,
1989
, “
Time Dependent Fracture of Polymers
,”
AFR
,
4
, pp.
2683
2711
.
43.
Bažant
,
Z.
, and
Li
,
Y. N.
,
1997
, “
Cohesive Crack With Rate-dependent Opening and Viscoelasticity: I. Mathematical Model and Scaling
,”
Int. J. Fract.
,
86
(
3
), pp.
247
265
. 10.1023/A:1007486221395
44.
Di Luzio
,
G.
, and
Cusatis
,
G.
,
2018
, “
Cohesive Crack Analysis of Size Effect for Samples With Blunt Notches and Generalized Size Effect Curve for Quasi-brittle Materials
,”
Eng. Fract. Mech.
,
204
, pp.
15
28
. 10.1016/j.engfracmech.2018.09.003
45.
Qiao
,
Y.
, and
Salviato
,
M.
,
2019
, “
Strength and Cohesive Behavior of Thermoset Polymers At the Microscale: A Size-Effect Study
,”
Eng. Fract. Mech.
,
213
, pp.
100
117
. 10.1016/j.engfracmech.2019.03.033
46.
Xue
,
J.
, and
Kirane
,
K.
,
2019
, “
Strength Size Effect and Post-Peak Softening in Textile Composites Analyzed by Cohesive Zone and Crack Band Models
,”
Eng. Fract. Mech.
,
212
, pp.
106
122
. 10.1016/j.engfracmech.2019.03.025
47.
Simulia
,
2017
,
ABAQUS User’s Manual, Version 2017
,
Dassault Systemes Simulia Corp.
,
Providence, RI
.
48.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
. 10.1063/1.1712836
49.
Rivlin
,
R.
,
1948
, “
Large Elastic Deformations of Isotropic Materials IV. Further Developments of the General Theory
,”
Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Sci.
,
241
(
835
), pp.
379
397
. 10.1098/rsta.1948.0024
50.
Courtin
,
S.
,
Gardin
,
C.
,
Bezine
,
G.
, and
Hamouda
,
H. B. H.
,
2005
, “
Advantages of the J-integral Approach for Calculating Stress Intensity Factors When Using the Commercial Finite Element Software Abaqus
,”
Eng. Fract. Mech.
,
72
(
14
), pp.
2174
2185
. 10.1016/j.engfracmech.2005.02.003
You do not currently have access to this content.