Abstract

One of the main issues in precision engineering is the lack of deep understanding of the pre-sliding behavior at the interface of mating surfaces of positioning mechanisms. In addition to the mechanical properties of the contacting bodies, their surface topography plays a key role in the pre-sliding regime and has a great impact on the frictional stiffness. This paper experimentally evaluates a boundary element method (BEM) model for the pre-sliding behavior at the interface of a smooth silicon wafer and a rough polymeric ball. The polymeric ball is either high-density polyethylene (HDPE) or polyoxymethylene (POM). The experiments are conducted at three different normal loads on five different spots on the wafer. The sliding stroke and coefficient of friction are extracted from experiments to be implemented as inputs to the numerical model. The roughness of the balls is also another input. The numerical and experimental friction hysteresis loops are compared. There is a small difference in the predicted pre-sliding distance from the experiments. The lateral stiffness, calculated at three different points on the pre-sliding regime of friction hysteresis loops, is compared with the Mindlin’s solution and experimental values for both contact interfaces and normal loads.

References

1.
Cattaneo
,
C.
,
1938
, “
Sul Contatto Di Due Corpi Elastici: Distribuzione Locale Degli Sforzi
,”
Atti Accad Naz Lincei
,
27
, pp.
342
348
.
2.
Mindlin
,
R. D.
,
1949
, “
Compliance of Elastic Bodies in Contact
,”
J. Appl. Mech.
,
16
, pp.
259
268
.
3.
Mindlin
,
R. D.
, and
Deresiewicz
,
H.
,
1953
, “
Elastic Spheres in Contact Under Varying Oblique Force
,”
J. Appl. Mech.
,
20
, pp.
327
344
.
4.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Semi-Analytical Solution for the Sliding Inception of a Spherical Contact
,”
J. Tribol.
,
125
(
3
), pp.
499
506
. 10.1115/1.1538190
5.
Wang
,
R. H.
,
Jain
,
V. K.
, and
Mall
,
S.
,
2007
, “
A Non-Uniform Friction Distribution Model for Partial Slip Fretting Contact
,”
Wear
,
262
(
5–6
), pp.
607
616
. 10.1016/j.wear.2006.07.005
6.
Yue
,
T.
, and
Abdel Wahab
,
M.
,
2017
, “
Finite Element Analysis of Fretting Wear Under Variable Coefficient of Friction and Different Contact Regimes
,”
Tribol. Int.
,
107
, pp.
274
282
. 10.1016/j.triboint.2016.11.044
7.
Chen
,
W. W.
,
Liu
,
S.
, and
Wang
,
Q. J.
,
2008
, “
Fast Fourier Transform Based Numerical Methods for Elasto-Plastic Contacts of Nominally Flat Surfaces
,”
J. Appl. Mech.
,
75
(
1
), p.
011022
. 10.1115/1.2755158
8.
Wang
,
Z. J.
,
Wang
,
W. Z.
,
Wang
,
H.
,
Zhu
,
D.
, and
Hu
,
Y. Z.
,
2010
, “
Partial Slip Contact Analysis on Three-Dimensional Elastic Layered Half Space
,”
ASME J. Tribol.
,
132
(
2
), p.
021403
. 10.1115/1.4001011
9.
Wang
,
Z. J.
,
Wang
,
W. Z.
,
Meng
,
F. M.
, and
Wang
,
J.-X.
,
2011
, “
Fretting Contact Analysis on Three-Dimensional Elastic Layered Half Space
,”
ASME J. Tribol.
,
133
(
3
), p.
031401
. 10.1115/1.4004104
10.
Rodríguez-Tembleque
,
L.
,
Abascal
,
R.
, and
Aliabadi
,
M. H.
,
2011
, “
A Boundary Elements Formulation for 3D Fretting-Wear Problems
,”
Eng. Anal. Boundary Elem.
,
35
(
7
), pp.
935
943
. 10.1016/j.enganabound.2011.03.002
11.
Gallego
,
L.
,
Nélias
,
D.
, and
Deyber
,
S.
,
2010
, “
A Fast and Efficient Contact Algorithm for Fretting Problems Applied to Fretting Modes I, II and III
,”
Wear
,
268
(
1–2
), pp.
208
222
. 10.1016/j.wear.2009.07.019
12.
Archard
,
J. F.
,
1957
, “
Elastic Deformation and the Laws of Friction
,”
Proc. R. Soc. A
,
243
(
1233
), pp.
190 LP
205
. https://doi.org/10.1098/rspa.1957.0214
13.
Greenwood
,
J. A.
, and
Williamson
,
J. P. B.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. A
,
295
(
1442
), pp.
300
319
. 10.1098/rspa.1966.0242
14.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1986
,
The Friction and Lubrication of Solids
,
Oxford University Press,
Oxford
.
15.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2010
, “
Physics-Based Modeling for Partial Slip Behavior of Spherical Contacts
,”
Int. J. Solids Struct.
,
47
(
18–19
), pp.
2554
2567
. 10.1016/j.ijsolstr.2010.05.017
16.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2011
, “
Physics-Based Modeling for Fretting Behavior of Nominally Flat Rough Surfaces
,”
Int. J. Solids Struct.
,
48
(
10
), pp.
1436
1450
. 10.1016/j.ijsolstr.2011.01.028
17.
Farhang
,
K.
,
Segalman
,
D.
, and
Starr
,
M.
,
2007
, “
Prediction of Dissipation in Joints Subject to Oscillating Force
,”
Proceedings of ASME/STLE International Joint Tribology Conference IJTC 2007, PART A
,
San Diego, CA
,
Oct. 22–24
, pp.
475
477
.
18.
Al-Bender
,
F.
, and
De Moerlooze
,
K.
,
2010
, “
On the Relationship Between Normal Load and Friction Force in Pre-Sliding Frictional Contacts. Part 1: Theoretical Analysis
,”
Wear
,
269
(
3–4
), pp.
174
182
. 10.1016/j.wear.2010.02.010
19.
De Moerlooze
,
K.
,
Al-Bender
,
F.
, and
Van Brussel
,
H.
,
2010
, “
A Generalised Asperity-Based Friction Model
,”
Tribol. Lett.
,
40
(
1
), pp.
113
130
. 10.1007/s11249-010-9645-x
20.
Eriten
,
M.
,
Polycarpou
,
A. A.
, and
Bergman
,
L. A.
,
2011
, “
Surface Roughness Effects on Energy Dissipation in Fretting Contact of Nominally Flat Surfaces
,”
ASME J. Appl. Mech.
,
78
(
2
),
021011
. 10.1115/1.4002433
21.
Song
,
B.
, and
Yan
,
S.
,
2017
, “
Relationship Between the Real Contact Area and Contact Force in Pre-Sliding Regime
,”
Chin. Phys. B
,
26
(
7
). 10.1088/1674-1056/26/7/074601
22.
Raeymaekers
,
B.
, and
Talke
,
F. E.
,
2010
, “
The Effect of Laser Polishing on Fretting Wear Between a Hemisphere and a Flat Plate
,”
Wear
,
269
(
5–6
), pp.
416
423
. 10.1016/j.wear.2010.04.027
23.
Pohrt
,
R.
, and
Li
,
Q.
,
2014
, “
Complete Boundary Element Formulation for Normal and Tangential Contact Problems
,”
Phys. Mesomech.
,
17
(
4
), pp.
334
340
. 10.1134/S1029959914040109
24.
Paggi
,
M.
,
Pohrt
,
R.
, and
Popov
,
V. L.
,
2014
, “
Partial-Slip Frictional Response of Rough Surfaces
,”
Sci. Rep.
,
4
(
1
), p.
5178
. 10.1038/srep05178
25.
Grzemba
,
B.
,
Pohrt
,
R.
,
Teidelt
,
E.
, and
Popov
,
V. L.
,
2014
, “
Maximum Micro-Slip in Tangential Contact of Randomly Rough Self-Affine Surfaces
,”
Wear
,
309
(
1–2
), pp.
256
258
. 10.1016/j.wear.2013.11.050
26.
Kasarekar
,
A. T.
,
Bolander
,
N. W.
,
Sadeghi
,
F.
, and
Tseregounis
,
S.
,
2007
, “
Modeling of Fretting Wear Evolution in Rough Circular Contacts in Partial Slip
,”
Int. J. Mech. Sci.
,
49
(
6
), pp.
690
703
. 10.1016/j.ijmecsci.2006.08.021
27.
Chen
,
S. C.
,
Wei
,
P. J.
, and
Lin
,
J. F.
,
2009
, “
A Model Developed for the Adhesion Forces Formed Between an Atomic Force Microscopy Tip and a Rough Surface Under Different Humidity Levels
,”
Jpn J. Appl. Phys.
,
48
(
5R
), p.
0550011
. 10.1143/JJAP.48.055001
28.
Bazrafshan
,
M.
,
de Rooij
,
M. B.
, and
Schipper
,
D. J.
,
2019
, “
The Effect of Adhesion and Roughness on Friction Hysteresis Loops
,”
Int. J. Mech. Sci.
,
155
, pp.
9
18
. 10.1016/j.ijmecsci.2019.02.027
29.
Bazrafshan
,
M.
,
de Rooij
,
M. B.
, and
Schipper
,
D. J.
,
2018
, “
Adhesive Force Model at a Rough Interface in the Presence of Thin Water Films: The Role of Relative Humidity
,”
Int. J. Mech. Sci.
,
140
, pp.
471
485
. 10.1016/j.ijmecsci.2018.03.024
30.
Bazrafshan
,
M.
,
de Rooij
,
M. B.
,
Valefi
,
M.
, and
Schipper
,
D. J.
,
2017
, “
Numerical Method for the Adhesive Normal Contact Analysis Based on a Dugdale Approximation
,”
Tribol. Int.
,
112
, pp.
117
128
. 10.1016/j.triboint.2017.04.001
31.
Yaqoob
,
M. A.
,
de Rooij
,
M. B.
, and
Schipper
,
D. J.
,
2012
, “
Design of a Vacuum Based Test Rig for Measuring Micro Adhesion and Friction Force
,”
High Perform. Struct. Mater.
,
124
, pp.
261
274
. 10.2495/HPSM120231
32.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
. 10.1557/JMR.1992.1564
33.
Tang
,
B.
, and
Ngan
,
A. H. W.
,
2003
, “
Accurate Measurement of tip—Sample Contact Size During Nanoindentation of Viscoelastic Materials
,”
J. Mater. Res.
,
18
(
5
), pp.
1141
1148
. 10.1557/JMR.2003.0156
34.
Bazrafshan
,
M.
,
de Rooij
,
M. B.
, and
Schipper
,
D. J.
,
2018
, “
On the Role of Adhesion and Roughness in Stick-Slip Transition at the Contact of two Bodies: A Numerical Study
,”
Tribol. Int.
,
121
, pp.
381
388
. 10.1016/j.triboint.2018.02.004
You do not currently have access to this content.