Abstract

The topological derivative describes the variation of a response functional with respect to infinitesimal changes in topology, such as the introduction of an infinitesimal crack or hole. In this three-dimensional fracture mechanics work, we propose an approximation of the energy release rate field associated with a small surface crack of any boundary location, direction, and orientation combination using the topological derivative. This work builds on the work of Silva et al. (“Energy Release Rate Approximation for Small Surface-Breaking Cracks Using the Topological Derivative,” J. Mech. Phys. Solids 59(5), pp. 925–939), in which the authors proposed an approximation of the energy release rate field which was limited to two-dimensional domains. The proposed method is computationally advantageous because it only requires a single analysis. By contrast, current boundary element and finite element-based methods require an analysis for each crack length-location-direction-orientation combination. Furthermore, the proposed method is evaluated on the non-cracked domain, obviating the need for refined meshes in the crack tip region.

References

References
1.
Griffith
,
A. A.
,
1921
, “
The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. London. Ser. A, Containing Papers Math. Phys. Charact.
,
221
, pp.
163
198
. 10.1098/rsta.1921.0006
2.
Williams
,
M. L.
,
1957
, “
On the Stress Distribution At the Base of a Stationary Crack
,”
ASME J. Appl. Mech.
,
24
(
1
), pp.
109
114
.
3.
Palani
,
G.
,
Iyer
,
N. R.
, and
Dattaguru
,
B.
,
2006
, “
New a Posteriori Error Estimator and Adaptive Mesh Refinement Strategy for 2-D Crack Problems
,”
Eng. Fract. Mech.
,
73
(
6
), pp.
802
819
. 10.1016/j.engfracmech.2005.10.003
4.
Souiyah
,
M.
,
Alshoaibi
,
A.
,
Muchtar
,
A.
, and
Ariffin
,
A.
,
2009
, “
Two-Dimensional Finite Element Method for Stress Intensity Factor Using Adaptive Mesh Strategy
,”
Acta Mech.
,
204
(
1–2
), pp.
99
108
. 10.1007/s00707-008-0054-2
5.
Ayhan
,
A. O.
,
2007
, “
Stress Intensity Factors for Three-Dimensional Surface Cracks Using Enriched Finite Elements
,”
Int. J. Solids Struct.
,
44
(
25-26
), pp.
8579
8599
. 10.1016/j.ijsolstr.2007.06.022
6.
Munaswamy
,
K.
, and
Pullela
,
R.
,
2007
, “
Computation of Stress Intensity Factors for Through Cracks in Plates Using P-Version Finite Element Method
,”
Commun. Numer. Methods Eng.
,
24
(
12
), pp.
1753
1780
. 10.1002/cnm.1065
7.
Treifi
,
M.
,
Oyadiji
,
S. O.
, and
Tsang
,
D. K.
,
2008
, “
Computations of Modes I and II Stress Intensity Factors of Sharp Notched Plates Under In-Plane Shear and Bending Loading by the Fractal-Like Finite Element Method
,”
Int. J. Solids Struct.
,
45
(
25–26
), pp.
6468
6484
. 10.1016/j.ijsolstr.2008.08.013
8.
Ju
,
S.
,
1998
, “
Simulating Three-Dimensional Stress Intensity Factors by the Least-Squares Method
,”
Int. J. Numer. Methods Eng.
,
43
(
8
), pp.
1437
1451
. 10.1002/(SICI)1097-0207(19981230)43:8<1437::AID-NME477>3.0.CO;2-9
9.
Yu
,
T.
, and
Shi
,
L.
,
2012
, “
Determination of Sharp V-Notch Stress Intensity Factors Using the Extended Finite Element Method
,”
J. Strain Anal. Eng. Des.
,
47
(
2
), pp.
95
103
. 10.1177/0309324711433981
10.
Fehl
,
B.
, and
Truman
,
K.
,
1999
, “
An Evaluation of Fracture Mechanics Quarter-Point Displacement Techniques Used for Computing Stress Intensity Factors
,”
Eng. Struct.
,
21
(
5
), pp.
406
415
. 10.1016/S0141-0296(97)00221-6
11.
Yan
,
X.
,
2005
, “
Stress Intensity Factors for Asymmetric Branched Cracks in Plane Extension by Using Crack-Tip Displacement Discontinuity Elements
,”
Mech. Res. Commun.
,
32
(
4
), pp.
375
384
. 10.1016/j.mechrescom.2004.10.005
12.
Diamantoudis
,
A. T.
, and
Labeas
,
G.
,
2005
, “
Stress Intensity Factors of Semi-Elliptical Surface Cracks in Pressure Vessels by Global-Local Finite Element Methodology
,”
Eng. Fract. Mech.
,
72
(
9
), pp.
1299
1312
. 10.1016/j.engfracmech.2004.10.004
13.
Si
,
Y.
,
Yongjun
,
X.
, and
Williams
,
F.
,
2007
, “
Computation of Stress Intensity Factors by the Subregion Mixed Finite Element Method of Lines
,”
Acta Mech. Solida Sin.
,
20
(
2
), pp.
149
162
. 10.1007/s10338-007-0718-9
14.
Wen
,
P.
, and
Aliabadi
,
M.
,
2011
, “
A Variational Approach for Evaluation of Stress Intensity Factors Using the Element Free Galerkin Method
,”
Int. J. Solids Struct.
,
48
(
7–8
), pp.
1171
1179
. 10.1016/j.ijsolstr.2011.01.002
15.
Muthu
,
N.
,
Maiti
,
S.
,
Yan
,
W.
, and
Falzon
,
B.
,
2017
, “
Modelling Interacting Cracks Through a Level Set Using the Element-Free Galerkin Method
,”
Int. J. Mech. Sci.
,
134
, pp.
203
215
. 10.1016/j.ijmecsci.2017.10.009
16.
Junior
,
A. M.
,
Sales
,
R.
,
Osterno
,
F.
,
Timbo
,
K.
, and
de Deus
,
E.
,
2018
, “
Failure Analysis of E-Glass Reinforced PMMA Using XFEM
,”
Sci. Technol. Mater.
,
30
(
1
), pp.
34
50
. 10.1016/j.stmat.2018.11.002
17.
Tian
,
H.
,
Wen
,
L.
, and
Wang
,
L.
,
2019
, “
Three-Dimensional Improved XFEM (IXFEM) for Static Crack Problems
,”
Comput. Methods Appl. Mech. Eng.
,
343
, pp.
339
367
. 10.1016/j.cma.2018.08.029
18.
Mi
,
Y.
, and
Aliabadi
,
M.
,
1992
, “
Dual Boundary Element Method for Three-Dimensional Fracture Mechanics Analysis
,”
Eng. Anal. Boundary Elem.
,
10
(
2
), pp.
161
171
. 10.1016/0955-7997(92)90047-B
19.
Portela
,
A.
,
Aliabadi
,
M.
, and
Rooke
,
D.
,
1992
, “
The Dual Boundary Element Method: Effective Implementation for Crack Problems
,”
Int. J. Numer. Methods Eng.
,
33
(
6
), pp.
1269
1287
. 10.1002/nme.1620330611
20.
Dong
,
Y.
,
Wang
,
Z.
, and
Wang
,
B.
,
1997
, “
On the Computation of Stress Intensity Factors for Interfacial Cracks Using Quarter-Point Boundary Elements
,”
Eng. Fract. Mech.
,
57
(
4
), pp.
335
342
. 10.1016/S0013-7944(97)00057-X
21.
Moftakhar
,
A.
, and
Glinka
,
G.
,
1992
, “
Calculation of Stress Intensity Factors by Efficient Integration of Weight Functions
,”
Eng. Fract. Mech.
,
43
(
5
), pp.
749
756
. 10.1016/0013-7944(92)90005-Y
22.
Mikkola
,
T. P.
,
1993
, “
Applications of the Weight Function Method
,”
Eng. Fract. Mech.
,
45
(
2
), pp.
209
231
. 10.1016/0013-7944(93)90187-W
23.
Glinka
,
G.
, and
Shen
,
G.
,
1991
, “
Universal Features of Weight Functions for Cracks in Mode I
,”
Eng. Fract. Mech.
,
40
(
6
), pp.
1135
1146
. 10.1016/0013-7944(91)90177-3
24.
Kobayashi
,
A. S.
,
1984
, “
Numerical Analysis in Fracture Mechanics
,”
Application of Fracture Mechanics to Materials and Structures
,
G. C.
Sih
,
E.
Sommer
and
W.
Dahl
, eds., pp.
27
56
. 10.1007/978-94-009-6146-3_2
25.
Schmitt
,
W.
,
1987
,
Numerical Methods in Fracture Mechanics
,
Springer
,
Netherlands, Dordrecht
, pp.
47
74
.
26.
Mohammadnejad
,
M.
,
Liu
,
H.
,
Chan
,
A.
,
Dehkhoda
,
S.
, and
Fukuda
,
D.
,
2018
, “
An Overview on Advances in Computational Fracture Mechanics of Rock
,”
Geosyst. Eng.
, pp.
1
24
. 10.1080/12269328.2018.1448006
27.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
. 10.1115/1.3601206
28.
Shih
,
C.
,
1981
, “
Relationships Between the J-Integral and the Crack Opening Displacement for Stationary and Extending Cracks
,”
J. Mech. Phys. Solids
,
29
(
4
), pp.
305
326
. 10.1016/0022-5096(81)90003-X
29.
deLorenzi
,
H.
,
1982
, “
On the Energy Release Rate and the J-Integral for 3-D Crack Configurations
,”
Int. J. Fract.
,
19
(
3
), pp.
183
193
. 10.1007/BF00017129
30.
Gosz
,
M.
, and
Moran
,
B.
,
2002
, “
An Interaction Energy Integral Method for Computation of Mixed-Mode Stress Intensity Factors Along Non-Planar Crack Fronts in Three Dimensions
,”
Eng. Fract. Mech.
,
69
(
3
), pp.
299
319
. 10.1016/S0013-7944(01)00080-7
31.
Walters
,
M.
,
Paulino
,
G.
, and
Dodds
,
R.
, Jr.,
2006
, “
Computation of Mixed-Mode Stress Intensity Factors for Cracks in Three-Dimensional Functionally Graded Solids
,”
J. Eng. Mech.
,
132
(
1
), pp.
1
15
. 10.1061/(ASCE)0733-9399(2006)132:1(1)
32.
deLorenzi
,
H.
,
1985
, “
Energy Release Rate Calculations by the Finite Element Method
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
129
143
. 10.1016/0013-7944(85)90060-8
33.
Lin
,
S.-C.
, and
Abel
,
J.
,
1988
, “
Variational Approach for a New Direct-Integration Form of the Virtual Crack Extension Method
,”
Int. J. Fract.
,
38
(
3
), pp.
217
235
.
34.
Hwang
,
C.
,
Wawrzynek
,
P.
,
Tayebi
,
A.
, and
Ingraffea
,
A.
,
1998
, “
On the Virtual Crack Extension Method for Calculation of the Rates of Energy Release Rate
,”
Eng. Fract. Mech.
,
59
(
4
), pp.
521
542
. 10.1016/S0013-7944(97)00103-3
35.
Sokolowski
,
J.
, and
Zochowski
,
A.
,
1999
, “
On the Topological Derivative in Shape Optimization
,”
SIAM J. Control Optim.
,
37
(
4
), pp.
1251
1272
. 10.1137/S0363012997323230
36.
Auroux
,
D.
, and
Masmoudi
,
M.
,
2006
, “
A One-Shot Inpainting Algorithm Based on the Topological Asymptotic Analysis
,”
J. Comput. Appl. Math.
,
25
(
2–3
), pp.
251
267
.
37.
Larrabide
,
I.
,
Feijoo
,
R. A.
,
Novotny
,
A. A.
, and
Taroco
,
E. A.
,
2008
, “
Topological Derivative: A Tool for Image Processing
,”
Comput. Struct.
,
86
(
13–14
), pp.
1386
1403
. 10.1016/j.compstruc.2007.05.004
38.
Feijoo
,
G. R.
,
2004
, “
A New Method in Inverse Scattering Based on the Topological Derivative
,”
Inverse Prob.
,
20
(
6
), pp.
1819
1840
. 10.1088/0266-5611/20/6/008
39.
Bonnet
,
M.
, and
Constantinescu
,
A.
,
2005
, “
Inverse Problems in Elasticity
,”
Inverse Prob.
,
21
(
2
), pp.
R1
R50
. 10.1088/0266-5611/21/2/R01
40.
Masmoudi
,
M.
,
Pommier
,
J.
, and
Samet
,
B.
,
2005
, “
The Topological Asymptotic Expansion for the Maxwell Equations and Some Applications
,”
Inverse Prob.
,
21
(
2
), pp.
547
564
. 10.1088/0266-5611/21/2/008
41.
Cea
,
J.
,
Garreau
,
S.
,
Guillaume
,
P.
, and
Masmoudi
,
M.
,
2000
, “
The Shape and Topological Optimization Connection
,”
Comput. Methods Appl. Mech. Eng.
,
188
(
4
), pp.
713
726
. 10.1016/S0045-7825(99)00357-6
42.
Novotny
,
A. A.
,
Feijoo
,
R. A.
,
Taroco
,
E.
, and
Padra
,
C.
,
2003
, “
Topological Sensitivity Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
7–8
), pp.
803
829
. 10.1016/S0045-7825(02)00599-6
43.
Norato
,
J. A.
,
Bendsoe
,
M. P.
,
Haber
,
R. B.
, and
Tortorelli
,
D. A.
,
2007
, “
A Topological Derivative Method for Topology Optimization
,”
Struct. Multidiscip. Optim.
,
44
(
4-5
), pp.
375
386
. 10.1007/s00158-007-0094-6
44.
Amstutz
,
S.
,
Horchani
,
I.
, and
Masmoudi
,
M.
,
2005
, “
Crack Detection by the Topological Gradient Method
,”
Control Cybern.
,
34
(
1
), pp.
81
101
.
45.
Khludnev
,
A. M.
,
Novotny
,
A. A.
,
Sokolowski
,
J.
, and
Zochowski
,
A.
,
2009
, “
Shape and Topology Sensitivity Analysis for Cracks in Elastic Bodies on Boundaries of Rigid Inclusions
,”
J. Mech. Phys. Solids
,
57
(
10
), pp.
1718
1732
. 10.1016/j.jmps.2009.07.003
46.
Goethem
,
N. V.
, and
Novotny
,
A. A.
,
2010
, “
Crack Nucleation Sensitivity Analysis
,”
Math. Methods Appl. Sci.
,
33
(
16
), pp.
1978
1994
.
47.
Alidoost
,
K.
,
Geubelle
,
P. H.
, and
Tortorelli
,
D. A.
,
2018
, “
Energy Release Rate Approximation for Edge Cracks Using Higher-Order Topological Derivatives
,”
Int. J. Fract.
,
210
(
1–2
), pp.
187
205
. 10.1007/s10704-018-0271-1
48.
Silva
,
M.
,
Geubelle
,
P. H.
, and
Tortorelli
,
D. A.
,
2011
, “
Energy Release Rate Approximation for Small Surface-Breaking Cracks Using the Topological Derivative
,”
J. Mech. Phys. Solids
,
59
(
5
), pp.
925
939
. 10.1016/j.jmps.2011.03.005
49.
Garreau
,
S.
,
Guillaume
,
P.
, and
Masmoudi
,
M.
,
2001
, “
The Topological Asymptotic for PDE Systems: The Elasticity Case
,”
SIAM J. Control Optim.
,
39
(
6
), pp.
1756
1778
. 10.1137/S0363012900369538
50.
Feijoo
,
R. A.
,
Padra
,
C.
,
Saliba
,
R.
,
Taroco
,
E.
, and
Venere
,
M. J.
,
2000
, “
Shape Sensitivity Analysis for Energy Release Rate Evaluation and Its Application to the Study of Three-Dimensional Cracked Bodies
,”
Comput. Methods Appl. Mech. Eng.
,
188
(
4
), pp.
649
664
. 10.1016/S0045-7825(99)00353-9
51.
Taroco
,
E.
,
2000
, “
Shape Sensitivity Analysis in Linear Elastic Fracture Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
188
(
4
), pp.
692
712
. 10.1016/S0045-7825(99)00356-4
52.
de Faria
,
J. R.
,
Novotny
,
A. A.
,
Feijoo
,
R. A.
,
Taroco
,
E.
, and
Padra
,
C.
,
2007
, “
Second Order Topological Sensitivity Analysis
,”
Int. J. Solids Struct.
,
44
(
14–15
), pp.
4958
4977
. 10.1016/j.ijsolstr.2006.12.013
53.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
2000
,
The Stress Analysis of Cracks Handbook
, 3rd ed.,
American Society of Mechanical Engineers
.
54.
Kozlov
,
V.
,
Maz’ya
,
V.
, and
Movchan
,
A.
,
1999
,
Asymptotic Analysis of Fields in MultiStructures
,
Oxford University Press
,
Oxford
.
55.
Kassir
,
M. K.
, and
Sih
,
G. C.
,
1966
, “
Three-Dimensional Stress Distribution Around An Elliptical Crack Under Arbitrary Loadings
,”
ASME J. Appl. Mech.
,
33
(
3
), pp.
601
611
. 10.1115/1.3625127
You do not currently have access to this content.