Abstract

This paper presents complete nonlinear electromechanical models for energy harvesting devices consisting of multiple piezoelectric bimorphs (PBs) connected in parallel and series, for the first time. The proposed model is verified against available experimental results for a specific case. The piezoelectric and beam constitutive equations and different circuit equations are utilized to derive the complete nonlinear models for series and parallel connections of the PBs as well as those of piezoelectric layers in each bimorph, i.e., four nonlinear models in total. A multi-modal Galerkin approach is used to discretize these nonlinear electromechanical models. The resultant high-dimensional set of equations is solved utilizing a highly optimized and efficient numerical continuation code. Examining the system behavior shows that the optimum load resistance for an energy harvester array of 4 PBs connected in parallel is almost 4% of that for the case with PBs connected in series. It is shown an energy harvesting array of 8 PBs could reach a bandwidth of 14 Hz in low frequency range, i.e., 20–34 Hz. Compared with an energy harvester with 1 PB, it is shown that the bandwidth can be increased by more than 300% using 4 PBs and by more than 500% using 8 PBs. Additionally, the drawbacks of a multi-PB energy harvesting device are identified and design enhancements are proposed to improve the efficiency of the device.

References

References
1.
Yildirim
,
T.
,
Ghayesh
,
M. H.
,
Li
,
W.
, and
Alici
,
G.
,
2017
, “
A Review on Performance Enhancement Techniques for Ambient Vibration Energy Harvesters
,”
Renew. Sustain. Energy Rev.
,
71
, pp.
435
449
. 10.1016/j.rser.2016.12.073
2.
Ali
,
S. F.
, and
Adhikari
,
S.
,
2013
, “
Energy Harvesting Dynamic Vibration Absorbers
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041004
. 10.1115/1.4007967
3.
Boisseau
,
S.
,
Despesse
,
G.
, and
Seddik
,
B. A.
,
2013
, “
Nonlinear H-Shaped Springs to Improve Efficiency of Vibration Energy Harvesters
,”
ASME J. Appl. Mech.
,
80
(
6
), p.
061013
. 10.1115/1.4023961
4.
Chen
,
L. Q.
, and
Jiang
,
W. A.
,
2015
, “
Internal Resonance Energy Harvesting
,”
ASME J. Appl. Mech.
,
82
(
3
), p.
031004
. 10.1115/1.4029606
5.
Li
,
H.
,
Wang
,
X.
,
Zhu
,
F.
,
Ning
,
X.
,
Wang
,
H.
,
Rogers
,
J. A.
,
Zhang
,
Y.
, and
Huang
,
Y.
,
2018
, “
Viscoelastic Characteristics of Mechanically Assembled Three-Dimensional Structures Formed by Compressive Buckling
,”
ASME J. Appl. Mech.
,
85
(
12
), p.
121002
. 10.1115/1.4041163
6.
Wu
,
Z.
,
Harne
,
R. L.
, and
Wang
,
K. W.
,
2014
, “
Energy Harvester Synthesis Via Coupled Linear-Bistable System With Multistable Dynamics
,”
ASME J. Appl. Mech.
,
81
(
6
), p.
061005
. 10.1115/1.4026555
7.
Zou
,
H. X.
,
Zhang
,
W. M.
,
Wei
,
K. X.
,
Li
,
W. B.
,
Peng
,
Z. K.
, and
Meng
,
G.
,
2016
, “
A Compressive-Mode Wideband Vibration Energy Harvester Using a Combination of Bistable and Flextensional Mechanisms
,”
ASME J. Appl. Mech.
,
83
(
12
), p.
121005
. 10.1115/1.4034563
8.
Ghayesh
,
M. H.
, and
Farokhi
,
H.
,
2015
, “
Chaotic Motion of a Parametrically Excited Microbeam
,”
Int. J. Eng. Sci.
,
96
, pp.
34
45
. 10.1016/j.ijengsci.2015.07.004
9.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Amabili
,
M.
,
2013
, “
Nonlinear Behaviour of Electrically Actuated MEMS Resonators
,”
Int. J. Eng. Sci.
,
71
, pp.
137
155
. 10.1016/j.ijengsci.2013.05.006
10.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Alici
,
G.
,
2016
, “
Size-Dependent Performance of Microgyroscopes
,”
Int. J. Eng. Sci.
,
100
, pp.
99
111
. 10.1016/j.ijengsci.2015.11.003
11.
Gholipour
,
A.
,
Farokhi
,
H.
, and
Ghayesh
,
M. H.
,
2015
, “
In-Plane and Out-of-Plane Nonlinear Size-Dependent Dynamics of Microplates
,”
Nonlinear Dyn.
,
79
(
3
), pp.
1771
1785
. 10.1007/s11071-014-1773-7
12.
Abdelkareem
,
M. A. A.
,
Xu
,
L.
,
Ali
,
M. K. A.
,
El-Daly
,
A. R. B. M.
,
Hassan
,
M. A.
,
Elagouz
,
A.
, and
Bo
,
Y.
,
2019
, “
Analysis of the Prospective Vibrational Energy Harvesting of Heavy-Duty Truck Suspensions: A Simulation Approach
,”
Energy
,
173
, pp.
332
351
. 10.1016/j.energy.2019.02.060
13.
Fan
,
K.
,
Cai
,
M.
,
Liu
,
H.
, and
Zhang
,
Y.
,
2019
, “
Capturing Energy From Ultra-Low Frequency Vibrations and Human Motion Through a Monostable Electromagnetic Energy Harvester
,”
Energy
,
169
, pp.
356
368
. 10.1016/j.energy.2018.12.053
14.
Tang
,
X.
,
Zhang
,
D.
,
Liu
,
T.
,
Khajepour
,
A.
,
Yu
,
H.
, and
Wang
,
H.
,
2019
, “
Research on the Energy Control of a Dual-Motor Hybrid Vehicle During Engine Start-Stop Process
,”
Energy
,
166
, pp.
1181
1193
. 10.1016/j.energy.2018.10.130
15.
Dutoit
,
N. E.
,
Wardle
,
B. L.
, and
Kim
,
S.-G.
,
2005
, “
Design Considerations for MEMS-Scale Piezoelectric Mechanical Vibration Energy Harvesters
,”
Integr. Ferroelectr.
,
71
(
1
), pp.
121
160
. 10.1080/10584580590964574
16.
Sodano
,
H. A.
,
Inman
,
D. J.
, and
Park
,
G.
,
2005
, “
Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries
,”
J. Intell. Mater. Syst. Struct.
,
16
(
10
), pp.
799
807
. 10.1177/1045389X05056681
17.
Soliman
,
M.
,
Abdel-Rahman
,
E.
,
El-Saadany
,
E.
, and
Mansour
,
R.
,
2008
, “
A Wideband Vibration-Based Energy Harvester
,”
J. Micromech. Microeng.
,
18
(
11
), p.
115021
. 10.1088/0960-1317/18/11/115021
18.
Beeby
,
S. P.
,
Torah
,
R.
,
Tudor
,
M.
,
Glynne-Jones
,
P.
,
O’donnell
,
T.
,
Saha
,
C.
, and
Roy
,
S.
,
2007
, “
A Micro Electromagnetic Generator for Vibration Energy Harvesting
,”
J. Micromech. Microeng.
,
17
(
7
), p.
1257
. 10.1088/0960-1317/17/7/007
19.
Xue
,
H.
,
Hu
,
Y.
, and
Wang
,
Q.-M.
,
2008
, “
Broadband Piezoelectric Energy Harvesting Devices Using Multiple Bimorphs With Different Operating Frequencies
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
55
(
9
), pp.
2104
2108
. 10.1109/TUFFC.903
20.
Mann
,
B. P.
, and
Sims
,
N. D.
,
2009
, “
Energy Harvesting From the Nonlinear Oscillations of Magnetic Levitation
,”
J. Sound Vib.
,
319
(
1
), pp.
515
530
. 10.1016/j.jsv.2008.06.011
21.
Erturk
,
A.
, and
Inman
,
D. J.
,
2009
, “
An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting From Base Excitations
,”
Smart Mater. Struct.
,
18
(
2
), p.
025009
. 10.1088/0964-1726/18/2/025009
22.
Kim
,
M.
,
Hoegen
,
M.
,
Dugundji
,
J.
, and
Wardle
,
B. L.
,
2010
, “
Modeling and Experimental Verification of Proof Mass Effects on Vibration Energy Harvester Performance
,”
Smart Mater. Struct.
,
19
(
4
), p.
045023
. 10.1088/0964-1726/19/4/045023
23.
Lumentut
,
M. F.
,
Francis
,
L. A.
, and
Howard
,
I. M.
,
2012
, “
Analytical Techniques for Broadband Multielectromechanical Piezoelectric Bimorph Beams With Multifrequency Power Harvesting
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
59
(
11
), pp.
2555
2568
. 10.1109/TUFFC.2012.2489
24.
Nguyen
,
S. D.
, and
Halvorsen
,
E.
,
2011
, “
Nonlinear Springs for Bandwidth-Tolerant Vibration Energy Harvesting
,”
J. Microelectromech. Syst.
,
20
(
6
), pp.
1225
1227
. 10.1109/JMEMS.2011.2170824
25.
Firoozy
,
P.
,
Khadem
,
S. E.
, and
Pourkiaee
,
S. M.
,
2017
, “
Broadband Energy Harvesting Using Nonlinear Vibrations of a Magnetopiezoelastic Cantilever Beam
,”
Int. J. Eng. Sci.
,
111
, pp.
113
133
. 10.1016/j.ijengsci.2016.11.006
26.
Ju
,
S.
,
Chae
,
S. H.
,
Choi
,
Y.
,
Lee
,
S.
,
Lee
,
H. W.
, and
Ji
,
C.-H.
,
2013
, “
A Low Frequency Vibration Energy Harvester Using Magnetoelectric Laminate Composite
,”
Smart Mater. Struct.
,
22
(
11
), p.
115037
. 10.1088/0964-1726/22/11/115037
27.
Zhao
,
L.
, and
Yang
,
Y.
,
2018
, “
An Impact-Based Broadband Aeroelastic Energy Harvester for Concurrent Wind and Base Vibration Energy Harvesting
,”
Appl. Energy
,
212
, pp.
233
243
. 10.1016/j.apenergy.2017.12.042
28.
Jalili
,
N.
,
2009
,
Piezoelectric-Based Vibration Control: From Macro to Micro/Nano Scale Systems
,
Springer Science & Business Media, New York
.
29.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Amabili
,
M.
,
2013
, “
Nonlinear Dynamics of a Microscale Beam Based on the Modified Couple Stress Theory
,”
Compos. Part B Eng.
,
50
, pp.
318
324
. 10.1016/j.compositesb.2013.02.021
30.
Ghayesh
,
M. H.
,
Amabili
,
M.
, and
Farokhi
,
H.
,
2013
, “
Three-Dimensional Nonlinear Size-Dependent Behaviour of Timoshenko Microbeams
,”
Int. J. Eng. Sci.
,
71
, pp.
1
14
. 10.1016/j.ijengsci.2013.04.003
31.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Amabili
,
M.
,
2014
, “
In-Plane and Out-of-Plane Motion Characteristics of Microbeams With Modal Interactions
,”
Compos. Part B Eng.
,
60
, pp.
423
439
. 10.1016/j.compositesb.2013.12.074
32.
Farokhi
,
H.
,
Ghayesh
,
M.
, and
Amabili
,
M.
,
2013
, “
Nonlinear Dynamics of a Geometrically Imperfect Microbeam Based on the Modified Couple Stress Theory
,”
Int. J. Eng. Sci.
,
68
, pp.
11
23
. 10.1016/j.ijengsci.2013.03.001
33.
Ghayesh
,
M. H.
,
2018
, “
Functionally Graded Microbeams: Simultaneous Presence of Imperfection and Viscoelasticity
,”
Int. J. Mech. Sci.
,
140
, pp.
339
350
. 10.1016/j.ijmecsci.2018.02.037
34.
Ghayesh
,
M. H.
,
2018
, “
Dynamics of Functionally Graded Viscoelastic Microbeams
,”
Int. J. Eng. Sci.
,
124
, pp.
115
131
. 10.1016/j.ijengsci.2017.11.004
35.
Farokhi
,
H.
, and
Ghayesh
,
M. H.
,
2015
, “
Thermo-Mechanical Dynamics of Perfect and Imperfect Timoshenko Microbeams
,”
Int. J. Eng. Sci.
,
91
, pp.
12
33
. 10.1016/j.ijengsci.2015.02.005
36.
Ghayesh
,
M. H.
,
Amabili
,
M.
, and
Farokhi
,
H.
,
2013
, “
Nonlinear Forced Vibrations of a Microbeam Based on the Strain Gradient Elasticity Theory
,”
Int. J. Eng. Sci.
,
63
, pp.
52
60
. 10.1016/j.ijengsci.2012.12.001
37.
Mittelmann
,
H. D.
, and
Roose
,
D.
,
1990
,
Continuation Techniques and Bifurcation Problems
,
Springer
,
New York
.
38.
Allgower
,
E. L.
, and
Georg
,
K.
,
2003
,
Introduction to Numerical Continuation Methods
,
Society for Industrial and Applied Mathematics
.
39.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2008
,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
,
John Wiley & Sons
,
New York
.
40.
Krauskopf
,
B.
,
Osinga
,
H. M.
, and
Galán-Vioque
,
J.
,
2007
,
Numerical Continuation Methods for Dynamical Systems
,
Springer
,
New York
.
41.
Wasserstrom
,
E.
,
1973
, “
Numerical Solutions by the Continuation Method
,”
SIAM Rev.
,
15
(
1
), pp.
89
119
. 10.1137/1015003
You do not currently have access to this content.