Abstract

The problem of toughening heterogeneous materials with a stiff matrix and compliant inclusions is investigated through numerical simulations and experiments. Specifically, the problem of optimizing a combination of effective toughness and effective elastic modulus in the context of a square array of compliant inclusions in a stiff matrix is explored. Crack propagation in the heterogeneous material is simulated using a variational phase-field approach. It is found that the crack can meander between or get attracted to and trapped in the inclusions. Composite specimens with a stiff matrix and compliant circular inclusions were 3D printed, and their fracture toughness was measured using a specially designed loading fixture. The experimental results show agreement with the numerical predictions by demonstrating the attraction and trapping of cracks in the inclusions. This study demonstrates the potential for significant enhancement of toughness through elastic compliance contrast between the matrix and the inclusion without notably compromising the effective elastic modulus of the composite material.

References

1.
Evans
,
A. G.
, and
Faber
,
K. T.
,
1981
, “
Toughening of Ceramics by Circumferential Microcracking
,”
J. Am. Ceram. Soc.
,
64
(
7
), pp.
394
398
. 10.1111/j.1151-2916.1981.tb09877.x
2.
Faber
,
K. T.
, and
Evans
,
A. G.
,
1983
, “
Crack Deflection Processes—I. Theory
,”
Acta. Metall.
,
31
(
4
), pp.
565
576
. 10.1016/0001-6160(83)90046-9
3.
Faber
,
K. T.
, and
Evans
,
A. G.
,
1983
, “
Crack Deflection Processes—II. Experiment
,”
Acta. Metall.
,
31
(
4
), pp.
577
584
. 10.1016/0001-6160(83)90047-0
4.
Suresh
,
S.
,
1985
, “
Fatigue Crack Deflection and Fracture Surface Contact: Micromechanical Models
,”
Metall. Trans. A
,
16
(
2
), pp.
249
260
. 10.1007/BF02816051
5.
Gao
,
H.
, and
Rice
,
J. R.
,
1989
, “
A First-order Perturbation Analysis of Crack Trapping by Arrays of Obstacles
,”
ASME Trans. J. Appl. Mech.
,
56
(
4
), pp.
828
836
. 10.1115/1.3176178
6.
Hutchinson
,
J. W.
, and
Suo
,
Z.
,
1992
, “
Mixed Mode Cracking in Layered Materials
,”
Adv. Appl. Mech.
,
29
(
63
), p.
191
.
7.
Cox
,
B.
, and
Yang
,
Q.
,
2006
, “
In Quest of Virtual Tests for Structural Composites
,”
Science
,
314
(
5802
), pp.
1102
1107
. 10.1126/science.1131624
8.
Menig
,
R.
,
Meyers
,
M. H.
,
Meyers
,
M. A.
, and
Vecchio
,
K. S.
,
2000
, “
Quasi-Static and Dynamic Mechanical Response of Haliotis Rufescens (abalone) Shells
,”
Acta Mater.
,
48
(
9
), pp.
2383
2398
. 10.1016/S1359-6454(99)00443-7
9.
Evans
,
A. G.
,
Suo
,
Z.
,
Wang
,
R. Z.
,
Aksay
,
I. A.
,
He
,
M. Y.
, and
Hutchinson
,
J. W.
,
2001
, “
Model for the Robust Mechanical Behavior of Nacre
,”
J. Mater. Res.
,
16
(
9
), pp.
2475
2484
. 10.1557/JMR.2001.0339
10.
Kumar
,
P.
,
Nukala
,
V. V.
, and
Šimunović
,
S.
,
2005
, “
Statistical Physics Models for Nacre Fracture Simulation
,”
Phys. Rev. E – Stat., Nonlinear, Soft Matter Phys.
,
72
(
4
), pp.
1
9
.
11.
Dirr
,
N.
, and
Yip
,
N. K.
,
2006
, “
Pinning and De-Pinning Phenomena in Front Propagation in Heterogeneous Media
,”
Interfaces Free Boundaries
,
8
(
1
), pp.
79
109
. 10.4171/IFB/136
12.
Barthelat
,
F.
, and
Espinosa
,
H. D.
,
2007
, “
An Experimental Investigation of Deformation and Fracture of Nacre-Mother of Pearl
,”
Exp. Mech.
,
47
(
3
), pp.
311
324
. 10.1007/s11340-007-9040-1
13.
Begley
,
M. R.
,
Philips
,
N. R.
,
Compton
,
B. G.
,
Wilbrink
,
D. V.
,
Ritchie
,
R. O.
, and
Utz
,
M.
,
2012
, “
Micromechanical Models to Guide the Development of Synthetic ’brick and Mortar’ Composites
,”
J. Mech. Phys. Solids
,
60
(
8
), pp.
1545
1560
. 10.1016/j.jmps.2012.03.002
14.
Bouchaud
,
E.
,
1997
, “
Scaling Properties of Cracks
,”
J. Phys.: Condens. Matter
,
9
(
21
), pp.
4319
4344
. 10.1088/0953-8984/9/21/002
15.
Ramanathan
,
S.
,
Ertaş
,
D.
, and
Fisher
,
D. S.
,
1997
, “
Quasistatic Crack Propagation in Heterogeneous Media
,”
Phys. Rev. Lett.
,
79
(
5
), pp.
873
876
. 10.1103/PhysRevLett.79.873
16.
Bonamy
,
D.
,
Ponson
,
L.
,
Prades
,
S.
,
Bouchaud
,
E.
, and
Guillot
,
C.
,
2006
, “
Scaling Exponents for Fracture Surfaces in Homogeneous Glass and Glassy Ceramics
,”
Phys. Rev. Lett.
,
97
(
13
), pp.
1
4
. 10.1103/PhysRevLett.97.135504
17.
Bonamy
,
D.
,
Santucci
,
S.
, and
Ponson
,
L.
,
2008
, “
Crackling Dynamics in Material Failure As the Signature of a Self-organized Dynamic Phase Transition
,”
Phys. Rev. Lett.
,
101
(
4
), pp.
1
4
. 10.1103/PhysRevLett.101.045501
18.
Ponson
,
L.
, and
Bonamy
,
D.
,
2010
, “
Crack Propagation in Brittle Heterogeneous Solids: Material Disorder and Crack Dynamics
,”
Int. J. Fracture
,
162
(
1–2
), pp.
21
31
. 10.1007/s10704-010-9481-x
19.
Francfort
,
G. A.
, and
Marigo
,
J.-J.
,
1998
, “
Revisiting Brittle Fracture As An Energy Minimization Problem
,”
J. Mech. Phys. Solids
,
46
(
8
), pp.
1319
1342
. 10.1016/S0022-5096(98)00034-9
20.
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Marigo
,
J.-J.
,
2000
, “
Numerical Experiments in Revisited Brittle Fracture
,”
J. Mech. Phys. Solids
,
48
(
4
), pp.
797
826
. 10.1016/S0022-5096(99)00028-9
21.
Bourdin
,
B.
,
2007
, “
Numerical Implementation of a Variational Formulation of Quasi-Static Brittle Fracture
,”
Interfaces Free Bound.
,
9
(
3
), pp.
411
430
. 10.4171/IFB/171
22.
Bourdin
,
B.
,
Francfort
,
G. A.
, and
Marigo
,
J.-J.
,
2008
, “
The Variational Approach to Fracture
,”
J. Elasticity
,
91
(
1–3
), pp.
1
148
. 10.1007/s10659-007-9109-1
23.
Bourdin
,
B.
,
Marigo
,
J.-J.
,
Maurini
,
C.
, and
Sicsic
,
P.
,
2014
, “
Morphogenesis and Propagation of Complex Cracks Induced by Thermal Shocks
,”
Phys. Rev. Lett.
,
112
(
1
), p.
014301
. 10.1103/PhysRevLett.112.014301
24.
Pham
,
K.
,
Amor
,
H.
,
Marigo
,
J.-J.
, and
Maurini
,
C.
,
2011
, “
Gradient Damage Models and Their Use to Approximate Brittle Fracture
,”
Int. J. Damage Mech.
,
20
(
4, SI
), pp.
618
652
. 10.1177/1056789510386852
25.
Pham
,
K.
,
Marigo
,
J.-J.
, and
Maurini
,
C.
,
2011
, “
The Issues of the Uniqueness and the Stability of the Homogeneous Response in Uniaxial Tests with Gradient Damage Models
,”
J. Mech. Phys. Solids
,
59
(
6
), pp.
1163
1190
. 10.1016/j.jmps.2011.03.010
26.
Tanné
,
E.
,
Li
,
T.
,
Bourdin
,
B.
,
Marigo
,
J-J.
, and
Maurini
,
C.
,
2018
, “
Crack Nucleation in Variational Phase-field Models of Brittle Fracture
,”
J. Mech. Phys. Solids
,
110
, pp.
80
99
. 10.1016/j.jmps.2017.09.006
27.
Bourdin
,
B.
,
2019
, “
mef90/vDef: Variational Models of Defect Mechanics
,” https://github.com/bourdin/mef90
28.
Hossain
,
M. Z.
,
Hsueh
,
C. J.
,
Bourdin
,
B.
, and
Bhattacharya
,
K.
,
2014
, “
Effective Toughness of Heterogeneous Media
,”
J. Mech. Phys. Solids
,
71
(
1
), pp.
15
32
. 10.1016/j.jmps.2014.06.002
29.
Moulinec
,
H.
, and
Suquet
,
P.
,
1995
, “
A FFT-Based Numerical Method for Computing the Mechanical Properties of Composites From Images of Their Microstructures
,”
IUTAM Symposium on Microstructure-Property Interactions in Composite Materials
,
Aalborg, Denmark
,
Aug. 22–25, 1994
,
Springer
,
New York
, pp.
235
246
.
30.
Moulinec
,
H.
, and
Suquet
,
P.
,
1998
, “
A Numerical Method for Computing the Overall Response of Nonlinear Composites With Complex Microstructure
,”
Comput. Meth. Appl. Mech. Eng.
,
157
(
1–2
), pp.
69
94
. 10.1016/S0045-7825(97)00218-1
31.
Michel
,
J. C.
,
Moulinec
,
H.
, and
Suquet
,
P.
,
2001
, “
A Computational Scheme for Linear and Non-linear Composites with Arbitrary Phase Contrast
,”
Int. J. Numerical Methods Eng.
,
52
(
1–2
), pp.
139
160
. 10.1002/nme.275
32.
Hsueh
,
C.-J.
,
2017
, “
Effective Toughness of Heterogeneous Materials
,”
PhD thesis
,
California Institute of Technology
,
Pasadena, CA
.
33.
Wang
,
N.
, and
Xia
,
S.
,
2017
, “
Cohesive Fracture of Elastically Heterogeneous Materials: An Integrative Modeling and Experimental Study
,”
J. Mech. Phys. Solids
,
98
, pp.
87
105
. 10.1016/j.jmps.2016.09.004
34.
AutoDesk
,
2017
, “
Autodesk Standard Clear PR48 Formulation
,” https://cdn2.hubspot.net/hubfs/1545937/Autodesk_Standard_Clear_PR48_Formulation.pdf?__hss
35.
Brodnik
,
N. R.
,
Hsueh
,
C. J.
, and
Johnson
,
M. T.
,
2018
, “
A Nonconstraining Templated Powder Grid for Measurement of Strain
,”
Strain
,
54
, p.
e12273
. 10.1111/str.12273
36.
Brodnik
,
N. R.
,
2019
, “
Fracture and Toughening of Brittle Structures With Designed Anisotropy
,”
PhD thesis
,
California Institute of Technology
,
Pasadena, CA
.
37.
Grédiac
,
M.
,
Sur
,
F.
, and
Blaysat
,
B.
,
2016
, “
The Grid Method for In-plane Displacement and Strain Measurement: A Review and Analysis
,”
Strain
,
52
(
3
), pp.
205
243
. 10.1111/str.12182
You do not currently have access to this content.