Abstract

This work examines the effects of loading rate on the plastic flow and ductile failure of porous solids exhibiting rate-dependent behavior relevant to many structural metals. Two different modeling approaches for ductile failure are employed and numerical analyses are performed over a wide range of strain rates. Finite element unit cell simulations are carried out to evaluate the macroscopic mechanical response and ductile failure by void coalescence for various macroscopic strain rates. The unit cell results are then used to assess the accuracy of a rate-dependent porous plasticity model, which is subsequently used in strain localization analyses based on the imperfection band approach. Strain localization analyses are conducted for (i) proportional loading paths and (ii) non-proportional loading paths obtained from finite element simulations of axisymmetric and flat tensile specimens. The effects of strain rate are most apparent on the stress–strain response, whereas the effects of strain rate on ductile failure is found to be small for the adopted rate-dependent constitutive model. However, the rate-dependent constitutive formulation tends to regularize the plastic strain field when the strain rate increases. In the unit cell simulations, this slightly increases the strain at coalescence with increasing strain rate compared to a rate-independent constitutive formulation. When the strain rate is sufficiently high, the strain at coalescence becomes constant. The strain localization analyses show a negligible effect of strain rate under proportional loading, while the effect of strain rate is more pronounced when non-proportional loading paths are assigned.

References

1.
Nicholas
,
T.
,
1981
, “
Tensile Testing of Materials at High Rates of Strain
,”
Exp. Mech.
,
21
(
5
), pp.
177
185
. 10.1007/BF02326644
2.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the 7th International Symposium on Ballistics
,
The Hague, The Netherlands
,
Apr. 19–21
, pp.
541
547
.
3.
Johnson
,
G. R.
, and
Cook
,
W. A.
,
1985
, “
Fracture Characteristic of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
. 10.1016/0013-7944(85)90052-9
4.
Djapic Oosterkamp
,
L.
,
Ivankovic
,
A.
, and
Venizelos
,
G.
,
2000
, “
High Strain Rate Properties of Selected Aluminium Alloys
,”
Mater. Sci. Eng. A
,
278
(
1–2
), pp.
225
235
. 10.1016/S0921-5093(99)00570-5
5.
Smerd
,
R.
,
Winkler
,
S.
,
Salisbury
,
C.
,
Worswick
,
M.
,
Lloyd
,
D.
, and
Finn
,
M.
,
2005
, “
High Strain Rate Tensile Testing of Automotive Aluminum Alloy Sheet
,”
Int. J. Impact Eng.
,
32
(
1–4
), pp.
541
560
. 10.1016/j.ijimpeng.2005.04.013
6.
Dorbane
,
A.
,
Ayoub
,
G.
,
Mansoor
,
B.
,
Hamade
,
R.
,
Kridli
,
G.
, and
Imad
,
A.
,
2015
, “
Observations of the Mechanical Response and Evolution of Damage of AA 6061-T6 Under Different Strain Rates and Temperatures
,”
Mater. Sci. Eng. A
,
624
, pp.
239
249
. 10.1016/j.msea.2014.11.074
7.
Børvik
,
T.
,
Clausen
,
A. H.
,
Eriksson
,
M.
,
Berstad
,
T.
,
Hopperstad
,
O. S.
, and
Langseth
,
M.
,
2006
, “
Experimental and Numerical Study on the Perforation of AA6005-T6 Panels
,”
Int. J. Impact Eng.
,
32
(
1–4
), pp.
35
64
. 10.1016/j.ijimpeng.2005.05.001
8.
Reyes
,
A.
,
Hopperstad
,
O. S.
,
Lademo
,
O. G.
, and
Langseth
,
M.
,
2006
, “
Modeling of Textured Aluminum Alloys Used in a Bumper System: Material Tests and Characterization
,”
Comput. Mater. Sci.
,
37
(
3
), pp.
246
268
. 10.1016/j.commatsci.2005.07.001
9.
Chen
,
Y.
,
Clausen
,
A. H.
,
Hopperstad
,
O. S.
, and
Langseth
,
M.
,
2009
, “
Stress–Strain Behaviour of Aluminium Alloys at a Wide Range of Strain Rates
,”
Int. J. Solids Struct.
,
46
(
21
), pp.
3825
3835
. 10.1016/j.ijsolstr.2009.07.013
10.
Langseth
,
B. M.
,
Lindholm
,
U. S.
,
Larsen
,
P. K.
, and
Lian
,
B.
,
1991
, “
Strain-Rate Sensitivity of Mild Steel Grade St52-3N
,”
J. Eng. Mech.
,
117
(
4
), pp.
719
732
. 10.1061/(ASCE)0733-9399(1991)117:4(719)
11.
Hopperstad
,
O. S.
,
Børvik
,
T.
,
Langseth
,
M.
,
Labibes
,
K.
, and
Albertini
,
C.
,
2003
, “
On the Influence of Stress Triaxiality and Strain Rate on the Behaviour of a Structural Steel. Part I. Experiments
,”
Eur. J. Mech. A/Solids
,
22
(
1
), pp.
1
13
. 10.1016/S0997-7538(02)00006-2
12.
Singh
,
N. K.
,
Cadoni
,
E.
,
Singha
,
M. K.
, and
Gupta
,
N. K.
,
2011
, “
Dynamic Tensile Behavior of Multi Phase High Yield Strength Steel
,”
Mater. Des.
,
32
(
10
), pp.
5091
5098
. 10.1016/j.matdes.2011.06.027
13.
Qin
,
J.
,
Chen
,
R.
,
Wen
,
X.
,
Lin
,
Y.
,
Liang
,
M.
, and
Lu
,
F.
,
2013
, “
Mechanical Behaviour of Dual-phase High-Strength Steel Under High Strain Rate Tensile Loading
,”
Mater. Sci. Eng. A
,
586
, pp.
62
70
. 10.1016/j.msea.2013.07.091
14.
Erice
,
B.
,
Roth
,
C. C.
, and
Mohr
,
D.
,
2018
, “
Stress-State and Strain-Rate Dependent Ductile Fracture of Dual and Complex Phase Steel
,”
Mech. Mater.
,
116
, pp.
11
32
. 10.1016/j.mechmat.2017.07.020
15.
Dey
,
S.
,
Børvik
,
T.
,
Hopperstad
,
O. S.
,
Leinum
,
J. R.
, and
Langseth
,
M.
,
2004
, “
The Effect of Target Strength on the Perforation of Steel Plates Using Three Different Projectile Nose Shapes
,”
Int. J. Impact Eng.
,
30
(
8–9
), pp.
1005
1038
. 10.1016/j.ijimpeng.2004.06.004
16.
Børvik
,
T.
,
Dey
,
S.
, and
Clausen
,
A. H.
,
2009
, “
Perforation Resistance of Five Different High-Strength Steel Plates Subjected to Small-Arms Projectiles
,”
Int. J. Impact Eng.
,
36
(
7
), pp.
948
964
. 10.1016/j.ijimpeng.2008.12.003
17.
Lin
,
Y. C.
,
Chen
,
X. M.
, and
Liu
,
G.
,
2010
, “
A Modified Johnson–Cook Model for Tensile Behaviors of Typical High-Strength Alloy Steel
,”
Mater. Sci. Eng. A
,
527
(
26
), pp.
6980
6986
. 10.1016/j.msea.2010.07.061
18.
Chen
,
G.
,
Lu
,
L.
,
Ren
,
C.
, and
Ge
,
X.
,
2018
, “
Temperature Dependent Negative to Positive Strain Rate Sensitivity and Compression Behavior for 2024-T351 Aluminum Alloy
,”
J. Alloys Compd.
,
765
, pp.
569
585
. 10.1016/j.jallcom.2018.06.196
19.
Vilamosa
,
V.
,
Clausen
,
A.
,
Børvik
,
T.
,
Skjervold
,
S.
, and
Hopperstad
,
O.
,
2015
, “
Behaviour of Al–Mg–Si Alloys at a Wide Range of Temperatures and Strain Rates
,”
Int. J. Impact Eng.
,
86
, pp.
223
239
. 10.1016/j.ijimpeng.2015.08.008
20.
Roth
,
C. C.
, and
Mohr
,
D.
,
2014
, “
Effect of Strain Rate on Ductile Fracture Initiation in Advanced High Strength Steel Sheets: Experiments and Modeling
,”
Int. J. Plast.
,
56
, pp.
19
44
. 10.1016/j.ijplas.2014.01.003
21.
Dunand
,
M.
, and
Mohr
,
D.
,
2017
, “
Predicting the Rate-Dependent Loading Paths to Fracture in Advanced High Strength Steels Using an Extended Mechanical Threshold Model
,”
Int. J. Impact Eng.
,
108
, pp.
272
285
. 10.1016/j.ijimpeng.2017.02.020
22.
Tucker
,
M. T.
,
Horstemeyer
,
M. F.
,
Whittington
,
W. R.
,
Solanki
,
K. N.
, and
Gullett
,
P. M.
,
2010
, “
The Effect of Varying Strain Rates and Stress States on the Plasticity, Damage, and Fracture of Aluminum Alloys
,”
Mech. Mater.
,
42
(
10
), pp.
895
907
. 10.1016/j.mechmat.2010.07.003
23.
Børvik
,
T.
,
Hopperstad
,
O. S.
,
Berstad
,
T.
, and
Langseth
,
M.
,
2001
, “
A Computational Model of Viscoplasticity and Ductile Damage for Impact and Penetration
,”
Eur. J. Mech. A/Solids
,
20
(
5
), pp.
685
712
. 10.1016/S0997-7538(01)01157-3
24.
Boyce
,
B. L.
, and
Dilmore
,
M. F.
,
2009
, “
The Dynamic Tensile Behavior of Tough, Ultrahigh-Strength Steels at Strain-Rates From 0.0002 S-1 to 200 S-1
,”
Int. J. Impact Eng.
,
36
(
2
), pp.
263
271
. 10.1016/j.ijimpeng.2007.11.006
25.
Senthil
,
K.
,
Iqbal
,
M. A.
,
Chandel
,
P. S.
, and
Gupta
,
N. K.
,
2017
, “
Study of the Constitutive Behavior of 7075-T651 Aluminum Alloy
,”
Int. J. Impact Eng.
,
108
, pp.
171
190
. 10.1016/j.ijimpeng.2017.05.002
26.
Needleman
,
A.
,
1972
, “
Void Growth in an Elastic-Plastic Medium
,”
ASME J. Appl. Mech.
,
39
(
4
), pp.
964
970
. 10.1115/1.3422899
27.
Koplik
,
J.
, and
Needleman
,
A.
,
1988
, “
Void Growth and Coalescence in Porous Plastic Solids
,”
Int. J. Solids Struct.
,
24
(
8
), pp.
835
853
. 10.1016/0020-7683(88)90051-0
28.
Brocks
,
W.
,
Sun
,
D.-Z.
, and
Hönig
,
A.
,
1995
, “
Verification of the Transferability of Micromechanical Parameters by Cell Model Calculations With Visco-Plastic Materials
,”
Int. J. Plast.
,
11
(
8
), pp.
971
989
. 10.1016/S0749-6419(95)00039-9
29.
Brocks
,
W.
,
Sun
,
D.-Z.
, and
Hönig
,
A.
,
1996
, “
Verification of Micromechanical Models for Ductile Fracture by Cell Model Calculations
,”
Comput. Mater. Sci.
,
7
(
1–2
), pp.
235
241
. 10.1016/S0927-0256(96)00086-9
30.
Flandi
,
L.
, and
Leblond
,
J. B.
,
2005
, “
A New Model for Porous Nonlinear Viscous Solids Incorporating Void Shape Effects—II: Numerical Validation
,”
Eur. J. Mech. A/Solids
,
24
(
4
), pp.
552
571
. 10.1016/j.euromechsol.2005.03.004
31.
Pan
,
J.
,
Saje
,
M.
, and
Needleman
,
A.
,
1983
, “
Localization of Deformation in Rate Sensitive Porous Plastic Solids
,”
Int. J. Fracture
,
21
(
4
), pp.
261
278
. 10.1007/BF00942345
32.
Rice
,
J. R.
,
1976
, “
The Localization of Plastic Deformation
,”
Proceedings 14th International Congress on Theoretical and Applied Mechanics
,
Delft, The Netherlands
,
Aug. 30–Sept. 4
, Vol.
1
, pp.
207
220
.
33.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
. 10.1115/1.3443401
34.
Rousselier
,
G.
,
1987
, “
Ductile Fracture Models and Their Potential in Local Approach of Fracture
,”
Nucl. Eng. Des.
,
105
(
1
), pp.
97
111
. 10.1016/0029-5493(87)90234-2
35.
Gruben
,
G.
,
Morin
,
D.
,
Langseth
,
M.
, and
Hopperstad
,
O. S.
,
2017
, “
Strain Localization and Ductile Fracture in Advanced High-Strength Steel Sheets
,”
Eur. J. Mech. A/Solids
,
61
, pp.
315
329
. 10.1016/j.euromechsol.2016.09.014
36.
Morin
,
D.
,
Dæhli
,
L. E. B.
,
Børvik
,
T.
,
Benallal
,
A.
, and
Hopperstad
,
O. S.
,
2019
, “
Numerical Study of Ductile Failure Under Non-Proportional Loading
,”
Eur. J. Mech. A/Solids
,
74
(
7491
), pp.
221
241
. 10.1016/j.euromechsol.2018.11.001
37.
Needleman
,
A.
, and
Rice
,
J. R.
,
1978
, “Limits to Ductililty Set by Plastic Flow Localization,”
Mechanics of Sheet Metal Forming: Material Behavior and Deformation Analysis
,
Donald P.
Koistinen
, and
Neng-Ming
Wang
, eds.,
Springer
,
Boston MA
, pp.
237
265
. DOI:10.1007/978-1-4613-2880-3_10
38.
Morin
,
D.
,
Hopperstad
,
O. S.
, and
Benallal
,
A.
,
2018
, “
On the Description of Ductile Fracture in Metals by the Strain Localization Theory
,”
Int. J. Fracture
,
209
(
1–2
), pp.
27
51
. 10.1007/s10704-017-0236-9
39.
Ristinmaa
,
M.
, and
Ottosen
,
N. S.
,
2000
, “
Consequences of Dynamic Yield Surface in Viscoplasticity
,”
Int. J. Solids Struct.
,
37
(
33
), pp.
4601
4622
. 10.1016/S0020-7683(99)00158-4
40.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1986
, “
Effect of Material Rate Sensitivity on Failure Modes in the Charpy V-Notch Test
,”
J. Mech. Phys. Solids
,
34
(
3
), pp.
213
241
. 10.1016/0022-5096(86)90019-0
41.
Needleman
,
A.
, and
Tvergaard
,
V.
,
1991
, “
An Analysis of Dynamic, Ductile Crack Growth in a Double Edge Cracked Specimen
,”
Int. J. Fracture
,
49
(
1
), pp.
41
67
. 10.1007/BF00013502
42.
Needleman
,
A.
, and
Tvergaards
,
V.
,
1991
, “
Effects on Dynamic, Ductile Crack Growth
,”
Eng. Fract. Mech.
,
38
(
2–3
), pp.
157
173
. 10.1016/0013-7944(91)90079-G
43.
Mathur
,
K. K.
,
Needleman
,
A.
, and
Tvergaard
,
V.
,
1996
, “
Three Dimensional Analysis of Dynamic Ductile Crack Growth in a Thin Plate
,”
J. Mech. Phys. Solids
,
44
(
3
), pp.
439
459
. 10.1016/0022-5096(95)00087-9
44.
Siegmund
,
T.
, and
Needleman
,
A.
,
1997
, “
A Numerical Study of Dynamic Crack Growth in Elastic-Viscoplastic Solids
,”
Int. J. Solids Struct.
,
34
(
7
), pp.
769
787
. 10.1016/S0020-7683(96)00062-5
45.
Basu
,
S.
, and
Narasimhan
,
R.
,
1999
, “
A Finite Element Study of the Effects of Material Characteristics and Crack Tipconstraint on Dynamic Ductile Fracture Initiation
,”
J. Mech. Phys. Solids
,
47
(
2
), pp.
325
350
. 10.1016/S0022-5096(98)00071-4
46.
Grimsmo
,
E. L.
,
Dæhli
,
L. E. B.
,
Hopperstad
,
O. S.
,
Aalberg
,
A.
,
Langseth
,
M.
, and
Clausen
,
A. H.
,
2017
, “
Numerical Study of Fillet Welds Subjected to Quasi-Static and Impact Loading
,”
Int. J. Mech. Sci.
,
131–132
(
July
), pp.
1092
1105
. 10.1016/j.ijmecsci.2017.08.007
47.
Tvergaard
,
V.
,
1981
, “
Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fract.
,
17
(
4
), pp.
389
407
. 10.1007/BF00036191
48.
Faleskog
,
J.
,
Gao
,
X.
, and
Shih
,
C. F.
,
1998
, “
Cell Model for Nonlinear Fracture Analysis—I. Micromechanics Calibration
,”
Int. J. Fract.
,
89
(
4
), pp.
355
373
. 10.1023/A:1007421420901
49.
Kim
,
J.
,
Gao
,
X.
, and
Srivatsan
,
T. S.
,
2004
, “
Modeling of Void Growth in Ductile Solids: Effects of Stress Triaxiality and Initial Porosity
,”
Eng. Fract. Mech.
,
71
(
3
), pp.
379
400
. 10.1016/S0013-7944(03)00114-0
50.
Liu
,
Z. G.
,
Wong
,
W. H.
, and
Guo
,
T. F.
,
2016
, “
Void Behaviors From Low to High Triaxialities: Transition From Void Collapse to Void Coalescence
,”
Int. J. Plast.
,
84
, pp.
183
202
. 10.1016/j.ijplas.2016.05.008
51.
Dæhli
,
L. E. B.
,
Faleskog
,
J.
,
Børvik
,
T.
, and
Hopperstad
,
O. S.
,
2017
, “
Unit Cell Simulations and Porous Plasticity Modelling for Strongly Anisotropic FCC Metals
,”
Eur. J. Mech. A/Solids
,
65
, pp.
360
383
. 10.1016/j.euromechsol.2017.05.004
52.
Steglich
,
D.
,
Wafai
,
H.
, and
Besson
,
J.
,
2010
, “
Interaction Between Anisotropic Plastic Deformation and Damage Evolution in Al 2198 Sheet Metal
,”
Eng. Fract. Mech.
,
77
(
17
), pp.
3501
3518
. 10.1016/j.engfracmech.2010.08.021
53.
Xue
,
Z.
,
Faleskog
,
J.
, and
Hutchinson
,
J. W.
,
2013
, “
Tension-Torsion Fracture Experiments—Part II: Simulations With the Extended Gurson Model and a Ductile Fracture Criterion Based on Plastic Strain
,”
Int. J. Solids Struct.
,
50
(
25–26
), pp.
4258
4269
. 10.1016/j.ijsolstr.2013.08.028
54.
Dæhli
,
L. E. B.
,
Faleskog
,
J.
,
Børvik
,
T.
, and
Hopperstad
,
O. S.
,
2016
, “
Unit Cell Simulations and Porous Plasticity Modelling for Recrystallization Textures in Aluminium Alloys
,”
Proc. Struct. Integrity
,
2
, pp.
2535
2542
. 10.1016/j.prostr.2016.06.317
55.
Dæhli
,
L.
,
Morin
,
D.
,
Børvik
,
T.
, and
Hopperstad
,
O.
,
2017
, “
Influence of Yield Surface Curvature on the Macroscopic Yielding and Ductile Failure of Isotropic Porous Plastic Materials
,”
J. Mech. Phys. Solids
,
107
, pp.
253
283
. 10.1016/j.jmps.2017.07.009
56.
Yamamoto
,
H.
,
1978
, “
Conditions for Shear Localization in the Ductile Fracture of Void-Containing Materials
,”
Int. J. Fract.
,
14
(
4
), pp.
347
365
. 10.1007/BF00015989
57.
Leroy
,
Y.
, and
Ortiz
,
M.
,
1990
, “
Finite Element Analysis of Transient Strain Localization Phenomena in Frictional Solids
,”
Int. J. Numer. Anal. Methods Geomech.
,
14
(
2
), pp.
93
124
. 10.1002/nag.1610140203
58.
Besson
,
J.
,
Steglich
,
D.
, and
Brocks
,
W.
,
2001
, “
Modeling of Crack Growth in Round Bars and Plane Strain Specimens
,”
Int. J. Solids Struct.
,
38
(
46–47
), pp.
8259
8284
. 10.1016/S0020-7683(01)00167-6
You do not currently have access to this content.