Abstract

This paper investigates the robustness against localized impacts of elastic spherical shells pre-loaded under uniform external pressure. We subjected a pre-loaded spherical shell that is clamped at its equator to axisymmetric blast-like impacts applied to its polar region. The resulting axisymmetric dynamic response is computed for increasing amplitudes of the blast. Both perfect shells and shells with axisymmetric geometric imperfections are analyzed. The impact energy threshold causing buckling is identified and compared with the energy barrier that exists between the buckled and unbuckled static equilibrium states of the energy landscape associated with the pre-loaded pressure. The extent to which the impact energy of the threshold blast exceeds the energy barrier depends on the details of its shape and width. Targeted blasts that approximately replicate the size and shape of the energy barrier buckling mode defined in the paper have an energy threshold that is only modestly larger than the energy barrier. An extensive study is carried out for more realistic Gaussian-shaped blasts revealing that the buckling threshold energy for these blasts is typically in the range of at least 10–40% above the energy barrier, depending on the pressure pre-load and the blast width. The energy discrepancy between the buckling threshold and energy barrier is due to elastic waves spreading outward from the impact and dissipation associated with the numerical integration scheme. Buckling is confined to the vicinity of the pole such that, if the shell is not shallow, the buckling thresholds are not strongly dependent on the location of the clamping boundary, as illustrated for a shell clamped halfway between the pole and the equator.

References

1.
Thompson
,
J. M. T.
, and
Sieber
,
J.
,
2016
, “
Shock-Sensitivity in Shell-Like Structures: With Simulations of Spherical Shell Buckling
,”
Int. J. Bifurcation Chaos
,
26
(
2
), p.
1630003
. 10.1142/S0218127416300032
2.
Hutchinson
,
J. W.
, and
Thompson
,
J. M. T.
,
2017
, “
Nonlinear Buckling Behaviour of Spherical Shells: Barriers and Symmetry-Breaking Dimples
,”
Philos. Trans. R. Soc. Lond., Ser. A
,
375
(
2093
), p.
20160154
. 10.1098/rsta.2016.0154
3.
Evkin
,
A. Y.
, and
Lykhachova
,
O. V.
,
2017
, “
Energy Barrier as a Criterion for Stability Estimation of Spherical Shell Under Uniform External Pressure
,”
Int. J. Solids Struct.
,
118–119
, pp.
14
23
. 10.1016/j.ijsolstr.2017.04.026
4.
Virot
,
E.
,
Kreilos
,
T.
,
Schneider
,
T. M.
, and
Rubinstein
,
S. M.
,
2017
, “
Stability Landscape of Shell Buckling
,”
Phys. Rev. Lett.
,
119
(
22
), p.
224101
. 10.1103/PhysRevLett.119.224101
5.
Hutchinson
,
J. W.
, and
Thompson
,
J. M. T.
,
2018
, “
Imperfections and Energy Barriers in Shell Buckling
,”
Int. J. Solids Struct.
,
148–149
, pp.
157
168
. 10.1016/j.ijsolstr.2018.01.030
6.
Marthelot
,
J.
,
López Jiménez
,
F.
,
Lee
,
A.
,
Hutchinson
,
J. W.
, and
Reis
,
P. M.
,
2017
, “
Buckling of Pressurized Hemispherical Shells Subject to Probing Forces
,”
ASME J. Appl. Mech.
,
84
(
12
), p.
121005
. 10.1115/1.4038063
7.
Huang
,
N.-C.
,
1964
, “
Unsymmetrical Buckling of Thin Shallow Spherical Shells
,”
ASME J. Appl. Mech.
,
31
(
3
), pp.
447
457
. 10.1115/1.3629662
8.
Dankowicz
,
H.
, and
Schilder
,
F.
,
2013
,
Recipes for Continuation
,
SIAM
,
Philadelphia
. (URL for code: https://sourceforge.net/projects/cocotools/)
9.
Sanders
,
J. L.
,
1963
, “
Nonlinear Shell Theories for Thin Shells
,”
Quart. Appl. Math.
,
21
(
1
), pp.
21
36
. 10.1090/qam/147023
10.
Koiter
,
W. T.
,
1966
, “
On the Nonlinear Theory of Thin Elastic Shells
,”
Proc. Kon. Ned. Ak. Wet.
,
B69
, pp.
1
54
.
11.
Hutchinson
,
J. W.
,
2016
, “
Buckling of Spherical Shells Revisited
,”
Proc. R. Soc. A
,
472
(
2195
). 10.1098/rspa.2016.0577
12.
Sieber
,
J.
,
Hutchinson
,
J. W.
, and
Thompson
,
J. M. T.
,
2019
, “
Nonlinear Dynamics of Spherical Shells Buckling Under Step Pressure
,”
Proc. R. Soc. A
,
475
(
2223
), p.
20180884
. 10.1098/rspa.2018.0884
13.
Koiter
,
W. T.
,
1969
, “
The Nonlinear Buckling Behavior of a Complete Spherical Shell Under Uniform External Pressure, Parts I, II, III & IV
,”
Proc. Kon. Ned. Ak. Wet.
,
B72
, pp.
40
123
.
14.
Starlinger
,
A.
,
Rammerstorfer
,
F. G.
, and
Auli
,
W.
,
1988
, “
Beulen und Nachbeulverhalten von Duennen Verrippten und Unverrippten Kugelschalen Unter Aussendruck
,”
Z. Angew. Math. Mech.
,
68
(
4
), pp.
257
260
.
15.
Lee
,
A.
,
Marthelot
,
J.
,
López Jiménez
,
F.
,
Hutchinson
,
J. W.
, and
Reis
,
P. M.
,
2016
, “
The Geometric Role of Precisely Engineered Imperfections on the Critical Buckling Load of Spherical Elastic Shells
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111005
. 10.1115/1.4034431
16.
NASA
,
1969
, “
Buckling of Thin-Walled Doubly Curved Shells
,”
NASA Space Vehicle Design Criteria, National Aeronautics and Space Administration
,
Washington, DC
,
Technical Report No. NASA SP-8032
.
17.
Marthelot
,
J.
,
Brun
,
P.-T.
,
López Jiménez
,
F.
, and
Reis
,
P. M.
,
2017
, “
Reversible Patterning of Spherical Shells Through Constrained Buckling
,”
Phys. Rev. Mater.
,
1
(
2
), p.
025601
. 10.1103/PhysRevMaterials.1.025601
18.
Horák
,
J.
,
Lord
,
G. J.
, and
Peletier
,
M. A.
,
2006
, “
Cylinder Buckling: The Mountain Pass as an Organizing Centre
,”
SIAM J. Appl. Math.
,
66
(
5
), pp.
1793
1824
. 10.1137/050635778
19.
Kreilos
,
T.
, and
Schneider
,
T. M.
,
2017
, “
Fully Localized Post-Buckling States of Cylindrical Shells Under Axial Compression
,”
Proc. R. Soc. A
,
473
(
2205
), p.
20170177
. 10.1098/rspa.2017.0177
20.
Groh
,
R. M. J.
, and
Pirrera
,
A.
,
2019
, “
On the Role of Localizations in Buckling of Axially Compressed Cylinders
,”
Proc. R. Soc. A
,
475
(
2224
), p.
20190006
. 10.1098/rspa.2019.0006
You do not currently have access to this content.