Abstract

Carbon micro/nanolattice materials, defined as three-dimensional (3D) architected metamaterials made of micro/nanoscale carbon constituents, have demonstrated exceptional mechanical properties, including ultrahigh specific strength, stiffness, and extensive deformability through experiments and simulations. The ductility of these carbon micro/nanolattices is also important for robust performance. In this work, we present a novel design of using reversible snap-through instability to engineer energy dissipation in 3D graphene nanolattices. Inspired by the shell structure of flexible straws, we construct a type of graphene counterpart via topological design and demonstrate its associated snap-through instability through molecular dynamics (MD) simulations. One-dimensional (1D) straw-like carbon nanotube (SCNT) and 3D graphene nanolattices are constructed from a unit cell. These graphene nanolattices possess multiple stable states and are elastically reconfigurable. A theoretical model of the 1D bi-stable element chain is adopted to understand the collective deformation behavior of the nanolattice. Reversible pseudoplastic behavior with a finite hysteresis loop is predicted and further validated via MD. Enhanced by these novel energy dissipation mechanisms, the 3D graphene nanolattice shows good tolerance of crack-like flaws and is predicted to approach a specific energy dissipation of 233 kJ/kg in a loading cycle with no permanent damage (one order higher than the energy absorbed by carbon steel at failure, 16 kJ/kg). This study provides a novel mechanism for 3D carbon nanolattice to dissipate energy with no accumulative damage and improve resistance to fracture, broadening the promising application of 3D carbon in energy absorption and programmable materials.

References

1.
Bauer
,
J.
,
Meza
,
L. R.
,
Schaedler
,
T. A.
,
Schwaiger
,
R.
,
Zheng
,
X.
, and
Valdevit
,
L.
,
2017
, “
Nanolattices: An Emerging Class of Mechanical Metamaterials
,”
Adv. Mater.
,
29
(
40
), p.
1701850
. 10.1002/adma.201701850
2.
Bauer
,
J.
,
Schroer
,
A.
,
Schwaiger
,
R.
, and
Kraft
,
O.
,
2016
, “
Approaching Theoretical Strength in Glassy Carbon Nanolattices
,”
Nat. Mater.
,
15
(
4
), p.
438
443
. 10.1038/nmat4561
3.
Zhang
,
X.
,
Vyatskikh
,
A.
,
Gao
,
H.
,
Greer
,
J. R.
, and
Li
,
X.
,
2019
, “
Lightweight, Flaw-Tolerant, and Ultrastrong Nanoarchitected Carbon
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
14
), pp.
6665
6672
. 10.1073/pnas.1817309116
4.
Qin
,
Z.
,
Jung
,
G. S.
,
Kang
,
M. J.
, and
Buehler
,
M. J.
,
2017
, “
The Mechanics and Design of a Lightweight Three-Dimensional Graphene Assembly
,”
Science Adv.
,
3
(
1
), p.
e1601536
. 10.1126/sciadv.1601536
5.
Jung
,
G. S.
, and
Buehler
,
M. J.
,
2018
, “
Multiscale Mechanics of Triply Periodic Minimal Surfaces of Three-Dimensional Graphene Foams
,”
Nano Lett.
,
18
(
8
), pp.
4845
4853
. 10.1021/acs.nanolett.8b01431
6.
Zhang
,
X.
,
Zhong
,
L.
,
Mateos
,
A.
,
Kudo
,
A.
,
Vyatskikh
,
A.
,
Gao
,
H.
,
Greer
,
J. R.
, and
Li
,
X.
,
2019
, “
Theoretical Strength and Rubber-Like Behaviour in Micro-Sized Pyrolytic Carbon
,”
Nat. Nanotechnol.
,
14
(
8
), pp.
762
769
. 10.1038/s41565-019-0486-y
7.
Kashani
,
H.
,
Ito
,
Y.
,
Han
,
J.
,
Liu
,
P.
, and
Chen
,
M.
,
2019
, “
Extraordinary Tensile Strength and Ductility of Scalable Nanoporous Graphene
,”
Sci. Adv.
,
5
(
2
), p.
eaat6951
. 10.1126/sciadv.aat6951
8.
Hu
,
M.
,
He
,
J.
,
Zhao
,
Z.
,
Strobel
,
T. A.
,
Hu
,
W.
,
Yu
,
D.
,
Sun
,
H.
,
Liu
,
L.
,
Li
,
Z.
, and
Ma
,
M.
,
2017
, “
Compressed Glassy Carbon: An Ultrastrong and Elastic Interpenetrating Graphene Network
,”
Sci. Adv.
,
3
(
6
), p.
e1603213
. 10.1126/sciadv.1603213
9.
Gao
,
H.
,
Ji
,
B.
,
Jäger
,
I. L.
,
Arzt
,
E.
, and
Fratzl
,
P.
,
2003
, “
Materials Become Insensitive to Flaws at Nanoscale: Lessons From Nature
,”
Proc. Natl. Acad. Sci. U.S.A.
,
100
(
10
), pp.
5597
5600
. 10.1073/pnas.0631609100
10.
Gao
,
H.
, and
Chen
,
S.
,
2005
, “
Flaw Tolerance in a Thin Strip Under Tension
,”
ASME J. Appl. Mech.
,
72
(
5
), pp.
732
737
. 10.1115/1.1988348
11.
Gu
,
X. W.
,
Jafary-Zadeh
,
M.
,
Chen
,
D. Z.
,
Wu
,
Z.
,
Zhang
,
Y.-W.
,
Srolovitz
,
D. J.
, and
Greer
,
J. R.
,
2014
, “
Mechanisms of Failure in Nanoscale Metallic Glass
,”
Nano Lett.
,
14
(
10
), pp.
5858
5864
. 10.1021/nl5027869
12.
Allen
,
M. J.
,
Tung
,
V. C.
, and
Kaner
,
R. B.
,
2009
, “
Honeycomb Carbon: A Review of Graphene
,”
Chem. Rev.
,
110
(
1
), pp.
132
145
. 10.1021/cr900070d
13.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
. 10.1126/science.1157996
14.
Zhang
,
P.
,
Ma
,
L.
,
Fan
,
F.
,
Zeng
,
Z.
,
Peng
,
C.
,
Loya
,
P. E.
,
Liu
,
Z.
,
Gong
,
Y.
,
Zhang
,
J.
, and
Zhang
,
X.
,
2014
, “
Fracture Toughness of Graphene
,”
Nat. Commun.
,
5
, p.
3782
. 10.1038/ncomms4782
15.
Anderson
,
T. L.
, and
Anderson
,
T. L.
,
2005
,
Fracture Mechanics: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
.
16.
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Torrents
,
A.
,
Sorensen
,
A. E.
,
Lian
,
J.
,
Greer
,
J. R.
,
Valdevit
,
L.
, and
Carter
,
W. B.
,
2011
, “
Ultralight Metallic Microlattices
,”
Science
,
334
(
6058
), pp.
962
965
. 10.1126/science.1211649
17.
Meza
,
L. R.
,
Das
,
S.
, and
Greer
,
J. R.
,
2014
, “
Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices
,”
Science
,
345
(
6202
), pp.
1322
1326
. 10.1126/science.1255908
18.
Meza
,
L. R.
,
Zelhofer
,
A. J.
,
Clarke
,
N.
,
Mateos
,
A. J.
,
Kochmann
,
D. M.
, and
Greer
,
J. R.
,
2015
, “
Resilient 3D Hierarchical Architected Metamaterials
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
37
), pp.
11,502
11,507
. 10.1073/pnas.1509120112
19.
Salari-Sharif
,
L.
,
Schaedler
,
T. A.
, and
Valdevit
,
L.
,
2014
, “
Energy Dissipation Mechanisms in Hollow Metallic Microlattices
,”
J. Mater. Res.
,
29
(
16
), pp.
1755
1770
. 10.1557/jmr.2014.226
20.
Holmes
,
D. P.
,
2019
, “
Elasticity and Stability of Shape Changing Structures
,”
Curr. Opin. Colloid Interface Sci
,
40
, pp.
118
137
. 10.1016/j.cocis.2019.02.008
21.
Bertoldi
,
K.
,
Vitelli
,
V.
,
Christensen
,
J.
, and
van Hecke
,
M.
,
2017
, “
Flexible Mechanical Metamaterials
,”
Nat. Rev. Mater.
,
2
(
11
), p.
17066
. 10.1038/natrevmats.2017.66
22.
Fargette
,
A.
,
Neukirch
,
S.
, and
Antkowiak
,
A.
,
2014
, “
Elastocapillary Snapping: Capillarity Induces Snap-Through Instabilities in Small Elastic Beams
,”
Phys. Rev. Lett.
,
112
(
13
), p.
137802
. 10.1103/PhysRevLett.112.137802
23.
Cedolin
,
L.
,
2010
,
Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories
,
World Scientific
,
Singapore
.
24.
Pandey
,
A.
,
Moulton
,
D. E.
,
Vella
,
D.
, and
Holmes
,
D. P.
,
2014
, “
Dynamics of Snapping Beams and Jumping Poppers
,”
Europhys. Lett.
,
105
(
2
), p.
24001
. 10.1209/0295-5075/105/24001
25.
Haghpanah
,
B.
,
Salari-Sharif
,
L.
,
Pourrajab
,
P.
,
Hopkins
,
J.
, and
Valdevit
,
L.
,
2016
, “
Multistable Shape-Reconfigurable Architected Materials
,”
Adv. Mater.
,
28
(
36
), pp.
7915
7920
. 10.1002/adma.201601650
26.
Shan
,
S.
,
Kang
,
S. H.
,
Raney
,
J. R.
,
Wang
,
P.
,
Fang
,
L.
,
Candido
,
F.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2015
, “
Multistable Architected Materials for Trapping Elastic Strain Energy
,”
Adv. Mater.
,
27
(
29
), pp.
4296
4301
. 10.1002/adma.201501708
27.
Restrepo
,
D.
,
Mankame
,
N. D.
, and
Zavattieri
,
P. D.
,
2015
, “
Phase Transforming Cellular Materials
,”
Extreme Mech. Lett.
,
4
, pp.
52
60
. 10.1016/j.eml.2015.08.001
28.
Rafsanjani
,
A.
,
Akbarzadeh
,
A.
, and
Pasini
,
D.
,
2015
, “
Snapping Mechanical Metamaterials Under Tension
,”
Adv. Mater.
,
27
(
39
), pp.
5931
5935
. 10.1002/adma.201502809
29.
Li
,
T.
, and
Zhang
,
Z.
,
2010
, “
Snap-Through Instability of Graphene on Substrates
,”
Nanoscale Res. Lett.
,
5
(
1
), p.
169
173
. 10.1007/s11671-009-9460-1
30.
Puglisi
,
G.
, and
Truskinovsky
,
L.
,
2000
, “
Mechanics of a Discrete Chain With bi-Stable Elements
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
1
27
. 10.1016/S0022-5096(99)00006-X
31.
Puglisi
,
G.
, and
Truskinovsky
,
L.
,
2002
, “
A Mechanism of Transformational Plasticity
,”
Continuum Mech. Thermodyn.
,
14
(
5
), pp.
437
457
. 10.1007/s001610200083
32.
Puglisi
,
G.
, and
Truskinovsky
,
L.
,
2002
, “
Rate Independent Hysteresis in a Bi-stable Chain
,”
J. Mech. Phys. Solids
,
50
(
2
), pp.
165
187
. 10.1016/S0022-5096(01)00055-2
33.
Puglisi
,
G.
, and
Truskinovsky
,
L.
,
2005
, “
Thermodynamics of Rate-Independent Plasticity
,”
J. Mech. Phys. Solids
,
53
(
3
), pp.
655
679
. 10.1016/j.jmps.2004.08.004
34.
Williams
,
P. M.
,
Fowler
,
S. B.
,
Best
,
R. B.
,
Toca-Herrera
,
J. L.
,
Scott
,
K. A.
,
Steward
,
A.
, and
Clarke
,
J.
,
2003
, “
Hidden Complexity in the Mechanical Properties of Titin
,”
Nature
,
422
(
6930
), p.
446
. 10.1038/nature01517
35.
Oberhauser
,
A. F.
,
Hansma
,
P. K.
,
Carrion-Vazquez
,
M.
, and
Fernandez
,
J. M.
,
2001
, “
Stepwise Unfolding of Titin Under Force-Clamp Atomic Force Microscopy
,”
Proc. Natl. Acad. Sci. U.S.A.
,
98
(
2
), pp.
468
472
. 10.1073/pnas.98.2.468
36.
Bhattacharya
,
K.
,
2003
,
Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect
,
Oxford University Press
,
Oxford
.
37.
Gandhi
,
M. V.
, and
Thompson
,
B.
,
1992
,
Smart Materials and Structures
, 1st ed.,
Springer Science & Business Media
,
London
.
38.
Calladine
,
C. R.
,
1989
,
Theory of Shell Structures
,
Cambridge University Press
,
Cambridge
.
39.
Holmes
,
D. P.
, and
Crosby
,
A. J.
,
2007
, “
Snapping Surfaces
,”
Adv. Mater.
,
19
(
21
), pp.
3589
3593
. 10.1002/adma.200700584
40.
Tavakol
,
B.
,
Bozlar
,
M.
,
Punckt
,
C.
,
Froehlicher
,
G.
,
Stone
,
H. A.
,
Aksay
,
I. A.
, and
Holmes
,
D. P.
,
2014
, “
Buckling of Dielectric Elastomeric Plates for Soft, Electrically Active Microfluidic Pumps
,”
Soft Matter
,
10
(
27
), pp.
4789
4794
. 10.1039/C4SM00753K
41.
Taffetani
,
M.
,
Jiang
,
X.
,
Holmes
,
D. P.
, and
Vella
,
D.
,
2018
, “
Static Bistability of Spherical Caps
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
474
(
2213
), p.
20170910
. 10.1098/rspa.2017.0910
42.
Panter
,
J. R.
,
Chen
,
J.
,
Zhang
,
T.
, and
Kusumaatmaja
,
H.
,
2019
, “
Harnessing Energy Landscape Exploration to Control the Buckling of Cylindrical Shells
,”
Commun. Phys.
,
2
(
1
), pp.
1
9
. 10.1038/s42005-019-0251-4
43.
Friedman
,
J. B.
,
1951
, “
Flexible Drinking Straw
,”
Google Patents
.
44.
Harp
,
H. J.
,
Leible
,
W. T.
, and
Mccort
,
W. M.
,
1968
, “
Flexible Drinking Tube
,”
Google Patents
.
45.
Bende
,
N. P.
,
Yu
,
T.
,
Corbin
,
N. A.
,
Dias
,
M. A.
,
Santangelo
,
C. D.
,
Hanna
,
J. A.
, and
Hayward
,
R. C.
,
2018
, “
Overcurvature Induced Multistability of Linked Conical Frusta: How a ‘Bendy Straw’ Holds Its Shape
,”
Soft Matter
,
14
(
42
), pp.
8636
8642
. 10.1039/C8SM01355A
46.
Ni
,
B.
,
Zhang
,
T.
,
Li
,
J.
,
Li
,
X.
, and
Gao
,
H.
,
2019
,
Handbook of Graphene: Physics, Chemistry, and Biology
, 1st ed.,
T.
Stauber
, ed., Vol.
2
,
Wiley
,
Hoboken, NJ
, pp.
1
44
.
47.
Zhang
,
T.
,
Li
,
X.
, and
Gao
,
H.
,
2014
, “
Defects Controlled Wrinkling and Topological Design in Graphene
,”
J. Mech. Phys. Solids
,
67
, pp.
2
13
. 10.1016/j.jmps.2014.02.005
48.
Zhang
,
T.
,
Li
,
X.
, and
Gao
,
H.
,
2014
, “
Designing Graphene Structures With Controlled Distributions of Topological Defects: A Case Study of Toughness Enhancement in Graphene Ruga
,”
Extreme Mech. Lett.
,
1
, pp.
3
8
. 10.1016/j.eml.2014.12.007
49.
Li
,
J.
,
Ni
,
B.
,
Zhang
,
T.
, and
Gao
,
H.
,
2018
, “
Phase Field Crystal Modeling of Grain Boundary Structures and Growth in Polycrystalline Graphene
,”
J. Mech. Phys. Solids
,
120
, pp.
36
48
. 10.1016/j.jmps.2017.12.013
50.
Elder
,
K. R.
,
Provatas
,
N.
,
Berry
,
J.
,
Stefanovic
,
P.
, and
Grant
,
M.
,
2007
, “
Phase-Field Crystal Modeling and Classical Density Functional Theory of Freezing
,”
Phys. Rev. B
,
75
(
6
), p.
064107
. 10.1103/PhysRevB.75.064107
51.
Seymour
,
M.
, and
Provatas
,
N.
,
2016
, “
Structural Phase Field Crystal Approach for Modeling Graphene and Other Two-Dimensional Structures
,”
Phys. Rev. B
,
93
(
3
), p.
035447
. 10.1103/PhysRevB.93.035447
52.
Hoover
,
W. G.
,
1985
, “
Canonical Dynamics: Equilibrium Phase-Space Distributions
,”
Phys. Rev. A
,
31
(
3
), p.
1695
1697
. 10.1103/PhysRevA.31.1695
53.
Yazyev
,
O. V.
, and
Louie
,
S. G.
,
2010
, “
Topological Defects in Graphene: Dislocations and Grain Boundaries
,”
Phys. Rev. B
,
81
(
19
), p.
195420
. 10.1103/PhysRevB.81.195420
54.
Filleter
,
T.
,
McChesney
,
J. L.
,
Bostwick
,
A.
,
Rotenberg
,
E.
,
Emtsev
,
K. V.
,
Seyller
,
T.
,
Horn
,
K.
, and
Bennewitz
,
R.
,
2009
, “
Friction and Dissipation in Epitaxial Graphene Films
,”
Phys. Rev. Lett.
,
102
(
8
), p.
086102
. 10.1103/PhysRevLett.102.086102
55.
Rogers
,
R. C.
, and
Truskinovsky
,
L.
,
1997
, “
Discretization and Hysteresis
,”
Phys. B
,
233
(
4
), pp.
370
375
. 10.1016/S0921-4526(97)00323-2
56.
Benichou
,
I.
, and
Givli
,
S.
,
2011
, “
The Hidden Ingenuity in Titin Structure
,”
Appl. Phys. Lett.
,
98
(
9
), p.
091904
. 10.1063/1.3558901
57.
Rief
,
M.
,
Gautel
,
M.
,
Oesterhelt
,
F.
,
Fernandez
,
J. M.
, and
Gaub
,
H. E.
,
1997
, “
Reversible Unfolding of Individual Titin Immunoglobulin Domains by AFM
,”
Science
,
276
(
5315
), pp.
1109
1112
. 10.1126/science.276.5315.1109
58.
Fraternali
,
F.
,
Blesgen
,
T.
,
Amendola
,
A.
, and
Daraio
,
C.
,
2011
, “
Multiscale Mass-Spring Models of Carbon Nanotube Foams
,”
J. Mech. Phys. Solids
,
59
(
1
), pp.
89
102
. 10.1016/j.jmps.2010.09.004
59.
Benichou
,
I.
, and
Givli
,
S.
,
2013
, “
Structures Undergoing Discrete Phase Transformation
,”
J. Mech. Phys. Solids
,
61
(
1
), pp.
94
113
. 10.1016/j.jmps.2012.08.009
60.
Wei
,
Y.
,
Wang
,
B.
,
Wu
,
J.
,
Yang
,
R.
, and
Dunn
,
M. L.
,
2012
, “
Bending Rigidity and Gaussian Bending Stiffness of Single-Layered Graphene
,”
Nano Lett.
,
13
(
1
), pp.
26
30
. 10.1021/nl303168w
61.
Florijn
,
B.
,
Coulais
,
C.
, and
van Hecke
,
M.
,
2014
, “
Programmable Mechanical Metamaterials
,”
Phys. Rev. Lett.
,
113
(
17
), p.
175503
. 10.1103/PhysRevLett.113.175503
62.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
. 10.1006/jcph.1995.1039
63.
Stukowski
,
A.
,
2009
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO—the Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
. 10.1088/0965-0393/18/1/015012
64.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
. 10.1063/1.481208
65.
Terdalkar
,
S. S.
,
Huang
,
S.
,
Yuan
,
H.
,
Rencis
,
J. J.
,
Zhu
,
T.
, and
Zhang
,
S.
,
2010
, “
Nanoscale Fracture in Graphene
,”
Chem. Phys. Lett.
,
494
(
4–6
), pp.
218
222
. 10.1016/j.cplett.2010.05.090
You do not currently have access to this content.