Abstract

The influence of grain size distribution on ductile intergranular crack growth resistance is investigated using full-field microstructure-based finite element calculations and a simpler model based on discrete unit events and graph search. The finite element calculations are carried out for a plane strain slice with planar grains subjected to mode I small-scale yielding conditions. The finite element formulation accounts for finite deformations, and the constitutive relation models the loss of stress carrying capacity due to progressive void nucleation, growth, and coalescence. The discrete unit events are characterized by a set of finite element calculations for crack growth at a single-grain boundary junction. A directed graph of the connectivity of grain boundary junctions and the distances between them is used to create a directed graph in J-resistance space. For a specified grain boundary distribution, this enables crack growth resistance curves to be calculated for all possible crack paths. Crack growth resistance curves are calculated based on various path choice criteria and compared with the results of full-field finite element calculations of the initial boundary value problem. The effect of unimodal and bimodal grain size distributions on intergranular crack growth is considered. It is found that a significant increase in crack growth resistance is obtained if the difference in grain sizes in the bimodal grain size distribution is sufficiently large.

References

1.
Cohen
,
Y.
,
Devauchelle
,
O.
,
Seybold
,
H. F.
,
Robert
,
S. Y.
,
Szymczak
,
P.
, and
Rothman
,
D. H.
,
2015
, “
Path Selection in the Growth of Rivers
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
46
), pp.
14132
14137
. 10.1073/pnas.1413883112
2.
Osovski
,
S.
,
Srivastava
,
A.
,
Williams
,
J. C.
, and
Needleman
,
A.
,
2015
, “
Grain Boundary Crack Growth in Metastable Titanium β Alloys
,”
Acta. Mater.
,
82
(
1
), pp.
167
178
. 10.1016/j.actamat.2014.08.062
3.
Srivastava
,
A.
,
Osovski
,
S.
, and
Needleman
,
A.
,
2017
, “
Engineering the Crack Path by Controlling the Microstructure
,”
J. Mech. Phys. Solids.
,
100
(
1
), pp.
1
20
. 10.1016/j.jmps.2016.12.006
4.
Osovski
,
S.
,
Needleman
,
A.
, and
Srivastava
,
A.
,
2019
, “
Intergranular Fracture Prediction and Microstructure Design
,”
Int. J. Fract.
,
216
(
2
), pp.
135
148
. 10.1007/s10704-019-00347-z
5.
Lynch
,
S. P.
,
1991
, “
Fracture of 8090 Al-Li Plate I. Short Transverse Fracture Toughness
,”
Mater. Sci. Eng.: A
,
136
, pp.
25
43
. 10.1016/0921-5093(91)90439-T
6.
Lüjtering
,
G.
, and
Williams
,
J. C.
,
2007
,
Titanium (Engineering Materials and Processes)
, 2nd ed.,
Springer Verlag
,
Berlin
.
7.
Uthaisangsuk
,
V.
,
Prahl
,
U.
, and
Bleck
,
W.
,
2009
, “
Characterisation of Formability Behaviour of Multiphase Steels by Micromechanical Modelling
,”
Int. J. Fract.
,
157
(
1–2
), pp.
55
69
. 10.1007/s10704-009-9329-4
8.
Gerbig
,
D.
,
Srivastava
,
A.
,
Osovski
,
S.
,
Hector
,
L. G.
, and
Bower
,
A.
,
2018
, “
Analysis and Design of Dual-Phase Steel Microstructure for Enhanced Ductile Fracture Resistance
,”
Int. J. Fract.
,
209
(
1–2
), pp.
3
26
. 10.1007/s10704-017-0235-x
9.
Kikuchi
,
S.
,
Nakamura
,
Y.
,
Ueno
,
A.
, and
Ameyama
,
K.
,
2015
, “
Low Temperature Nitriding of Commercially Pure Titanium With Harmonic Structure
,”
Mater. Trans.
,
56
(
11
), pp.
1807
1813
.
10.
Ota
,
M.
,
Vajpai
,
S. K.
,
Imao
,
R.
,
Kurokawa
,
K.
, and
Ameyama
,
K.
,
2015
, “
Application of High Pressure Gas Jet Mill Process to Fabricate High Performance Harmonic Structure Designed Pure Titanium
,”
Mater. Trans.
,
56
(
1
), pp.
154
159
.
11.
Fan
,
G. J.
,
Choo
,
H.
,
Liaw
,
P. K.
, and
Lavernia
,
E. J.
,
2006
, “
Plastic Deformation and Fracture of Ultrafine-Grained AlMg Alloys With a Bimodal Grain Size Distribution
,”
Acta Mater.
,
54
(
7
), pp.
1759
1766
. 10.1016/j.actamat.2005.11.044
12.
Kim
,
H. D.
,
Han
,
B. D.
,
Park
,
D. S.
,
Lee
,
B. T.
, and
Becher
,
P. F.
,
2002
, “
Novel Two-Step Sintering Process to Obtain a Bimodal Microstructure in Silicon Nitride
,”
J. Am. Ceram. Soc.
,
85
(
1
), pp.
245
252
. 10.1111/j.1151-2916.2002.tb00073.x
13.
Fang
,
Y.
,
Yu
,
F.
, and
White
,
K. W.
,
2000
, “
Bimodal Microstructure in Silicon Nitride-Barium Aluminum Silicate Ceramic-Matrix Composites by Pressureless Sintering
,”
J. Am. Ceram. Soc.
,
83
(
7
), pp.
1828
1830
. 10.1111/j.1151-2916.2000.tb01475.x
14.
Becher
,
P. F.
,
Sun
,
E. Y.
,
Plucknett
,
K. P.
,
Alexander
,
K. B.
,
Hsueh
,
C. H.
,
Lin
,
H. T.
,
Waters
,
S. B.
,
Westmoreland
,
C. G.
,
Kang
,
E. S.
,
Hirao
,
K.
, and
Brito
,
M. E.
,
1998
, “
Microstructural Design of Silicon Nitride With Improved Fracture Toughness: I, Effects of Grain Shape and Size
,”
J. Am. Ceram. Soc.
,
81
(
11
), pp.
2821
2830
. 10.1111/j.1151-2916.1998.tb02702.x
15.
Kikuchi
,
S.
,
Hayami
,
Y.
,
Ishiguri
,
T.
,
Guennec
,
B.
,
Ueno
,
A.
,
Ota
,
M.
, and
Ameyama
,
K.
,
2017
, “
Effect of Bimodal Grain Size Distribution on Fatigue Properties of Ti-6Al-4V Alloy With Harmonic Structure Under Four-Point Bending
,”
Mater. Sci. Eng. A.
,
687
, pp.
269
275
. 10.1016/j.msea.2017.01.076
16.
Saini
,
J.
,
Arora
,
H. S.
,
Grewal
,
H. S.
,
Perumal
,
G.
,
Ayyagari
,
A.
,
Salloom
,
R.
, and
Mukherjee
,
S.
,
2019
, “
Excellent Corrosion Resistance of Dual-Phase Bimodal Stainless Steel
,”
Steel. Res. Int.
,
90
(
5
), p.
1800554
. 10.1002/srin.201800554
17.
Rice
,
J.
,
1968
, “
A Path-independant Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
. 10.1115/1.3601206
18.
Belytschko
,
T.
,
Chiapetta
,
R. L.
, and
Bartel
,
H. D.
,
1976
, “
Efficient Large Scale Non-linear Transient Analysis by Finite Elements
,”
Int. J. Numer. Methods Eng.
,
10
(
3
), pp.
579
596
. 10.1002/nme.1620100308
19.
Peirce
,
D.
,
Shih
,
C. F.
, and
Needleman
,
A.
,
1984
, “
A Tangent Modulus Method for Rate Dependent Solids
,”
Comput. Struct.
,
18
(
5
), pp.
875
887
. 10.1016/0045-7949(84)90033-6
20.
Gurson
,
A. L.
,
1975
, “
Plastic Flow and Fracture Behavior of Ductile Materials Incorporating Void Nucleation, Growth and Interaction
,” Ph.D. thesis,
Brown University
,
Providence, RI
.
21.
Tvergaard
,
V.
,
1981
, “
Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fract.
,
17
(
4
), pp.
389
407
. 10.1007/BF00036191
22.
Tvergaard
,
V.
,
1982a
, “
On Localization in Ductile Materials Containing Spherical Voids
,”
Int. J. Fract.
,
18
(
4
), pp.
237
252
.
23.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of the Cup-cone Fracture in a Round Tensile Bar
,”
Acta. Metall.
,
32
(
1
), pp.
157
169
. 10.1016/0001-6160(84)90213-X
24.
Bowyer
,
A.
,
1981
, “
Computing Dirichlet Tessellations
,”
Comput. Jo.
,
24
(
2
), pp.
162
166
. 10.1093/comjnl/24.2.162
25.
Paris
,
P. C.
,
Tada
,
H.
,
Zahoor
,
A.
, and
Ernst
,
H.
,
1979
, “
The Theory of Instability of the Tearing Mode of Elastic-plastic Crack Growth. Elastic-Plastic Fracture
,”
ASTM STP
668
, pp.
5
36
.
26.
Lee
,
C. Y.
,
1961
, “
An Algorithm for Path Connections and Its Applications
,”
IRE Trans. Electron. Comput.
,
3
(
3
), pp.
346
365
. 10.1109/TEC.1961.5219222
27.
Dijkstra
,
E. W.
,
1959
, “
A Note on Two Problems in Connexion with Graphs
,”
Numerische Mathematik
,
1
(
1
), pp.
269
271
. 10.1007/BF01386390
28.
Jackson
,
A. P.
,
Vincent
,
J. F.
, and
Turner
,
R. M.
,
1988
, “
The Mechanical Design of Nacre
,”
Proc. R. Soc. London, B.
,
234
(
1277
), pp.
415
440
. 10.1098/rspb.1988.0056
29.
Fratzl
,
P.
, and
Weinkamer
,
R.
,
2007
, “
Natures Hierarchical Materials
,”
Prog. Mater. Sci.
,
52
(
8
), pp.
1263
1334
. 10.1016/j.pmatsci.2007.06.001
30.
Chai
,
H.
,
Lee
,
J. J. W.
,
Constantino
,
P. J.
,
Lucas
,
P. W.
, and
Lawn
,
B. R.
,
2009
, “
Remarkable Resilience of Teeth
,”
Proc. Natl. Acad. Sci. U. S. A.
,
106
(
18
), pp.
7289
7293
. 10.1073/pnas.0902466106
31.
Launey
,
M. E.
, and
Ritchie
,
R. O.
,
2009
, “
On the Fracture Toughness of Advanced Materials
,”
Adv. Mater.
,
21
(
20
), pp.
2103
2110
. 10.1002/adma.200803322
You do not currently have access to this content.