Abstract

Ultra-high-temperature materials have been widely used as key components in high-end equipment. However, the existing studies are mainly conducted at room and moderate temperatures. Besides, they are mainly carried out by experiments. Theories on the temperature dependence of fracture strength are rarely reported. In this work, experimental methods for the ultra-high-temperature tensile properties of advanced materials and the elastic–plastic properties of coatings are developed, respectively, based on induction heating and radiation furnace heating technologies. A temperature-dependent fracture strength model for ceramics is proposed in the view of energy. The experimental methods and theoretical model are verified on the 2D plain-weave carbon fiber reinforced silicon carbide thermal structure composite, yttria-stabilized zirconia thermal barrier coating, and Si3N4 ceramics. The study shows that the mechanical properties of materials decrease significantly at ultra-high temperatures. The results are useful for the applications of ultra-high-temperature materials in thermal structure engineering.

References

References
1.
Padture
,
N. P.
,
2016
, “
Advanced Structural Ceramics in Aerospace Propulsion
,”
Nat. Mater.
,
15
(
8
), pp.
804
809
. 10.1038/nmat4687
2.
Luo
,
L.
,
Wang
,
Y. G.
,
Liu
,
L. P.
,
Duan
,
L. Y.
,
Wang
,
G. L.
, and
Lu
,
Y. H.
,
2016
, “
Ablation Behavior of C/SiC Composites in Plasma Wind Tunnel
,”
Carbon
,
103
, pp.
73
83
. 10.1016/j.carbon.2016.02.085
3.
Dong
,
Z. G.
,
Wang
,
M.
,
Li
,
X. X.
, and
Teng
,
B. Q.
,
2011
, “
Application and Progress of Materials for Turbine Blade of Aeroengine
,”
J. Iron Steel Res.
,
23
(
S2
), pp.
455
457
.
4.
van Roode
,
M.
,
Brentnall
,
W. D.
,
Norton
,
P. F.
, and
Pytanowski
,
G. P.
,
1993
, “
Ceramic Stationary Gas Turbine Development
,”
Proceedings of the ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. Volume 3B: General
,
Cincinnati, OH
,
May 24–27
,
ASME
, p.
V03BT16A065
. https://doi.org/10.1115/93-GT-309
5.
Cheng
,
T. B.
,
Li
,
W. G.
, and
Fang
,
D. N.
,
2013
, “
Thermal Shock Resistance of Ultra-High-Temperature Ceramics Under Aerodynamic Thermal Environments
,”
AIAA J.
,
51
(
4
), pp.
840
848
. 10.2514/1.J051750
6.
Li
,
H. M.
,
Cheng
,
T. B.
,
Ma
,
Y. B.
,
Xu
,
B. S.
,
Fang
,
D. N.
, and
Yang
,
Y. Z.
,
2017
, “
Thermal Shock Resistance of Chemical Vapor Deposited Zinc Sulfide Under Active Cooling
,”
Int. J. Appl. Mech.
,
9
(
5
), p.
1750070
. 10.1142/S1758825117500703
7.
Zhang
,
W.
,
,
S. L.
,
,
Y.
, and
An
,
G. F.
,
2009
, “
Research of Tensile Performance of 2D Weave C/SiC Composites at High Temperature
,”
Struct. Environ. Eng.
,
36
(
1
), pp.
22
26
.
8.
Wang
,
K.
,
Chen
,
L. D.
, and
Zheng
,
X.
,
2010
, “
Comparison of Tensile Behavior of Plain-Woven Carbon/Silicon Carbide Composites at Room Temperature and High Temperature
,”
J. Aeronaut. Mater.
,
30
(
1
), pp.
78
84
.
9.
Cheng
,
Q. Y.
,
Tong
,
X. Y.
,
Zheng
,
X.
,
Zhou
,
J.
,
Yao
,
L. J.
, and
Li
,
B.
,
2010
, “
Experimental Investigation on the Fatigue Characteristics About High Temperature of Plain-Woven C/SiC Composite
,”
J. Mech. Strength
,
32
(
5
), pp.
819
823
.
10.
Yang
,
C. P.
,
Zhang
,
L.
,
Wang
,
B.
,
Huang
,
T.
, and
Jiao
,
G. Q.
,
2017
, “
Tensile Behavior of 2D-C/SiC Composites at Elevated Temperatures: Experiment and Modeling
,”
J. Eur. Ceram. Soc.
,
37
(
4
), pp.
1281
1290
. 10.1016/j.jeurceramsoc.2016.11.011
11.
Yoon
,
D. H.
,
Lee
,
J. W.
,
Kim
,
J. H.
,
Sihn
,
I. C.
, and
Lim
,
B. J.
,
2017
, “
Fracture Behavior of C/SiC Composites at Elevated Temperature
,”
J. Mech. Sci. Technol.
,
31
(
8
), pp.
3647
3651
. 10.1007/s12206-017-0702-3
12.
Watanabe
,
M.
,
Mercer
,
C.
,
Levi
,
C. G.
, and
Evans
,
A. G.
,
2004
, “
A Probe for the High Temperature Deformation of Thermal Barrier Oxides
,”
Acta Mater.
,
52
(
6
), pp.
1479
1487
. 10.1016/j.actamat.2003.11.029
13.
Jan
,
V.
,
Dorčáková
,
F.
,
Dusza
,
J.
, and
Bartsch
,
M.
,
2008
, “
Indentation Creep of Free-Standing EB-PVD Thermal Barrier Coatings
,”
J. Eur. Ceram. Soc.
,
28
(
1
), pp.
241
246
. 10.1016/j.jeurceramsoc.2007.04.011
14.
Kim
,
C. H.
, and
Heuer
,
A. H.
,
2004
, “
A High-Temperature Displacement-Sensitive Indenter for Studying Mechanical Properties of Thermal Barrier Coatings
,”
J. Mater. Res.
,
19
(
1
), pp.
351
356
. 10.1557/jmr.2004.19.1.351
15.
Cheng
,
T. B.
,
Zhang
,
R. B.
,
Pei
,
Y. M.
,
Ai
,
S. G.
,
He
,
R. J.
,
Zhao
,
Y. N.
,
Fang
,
D. N.
, and
Yang
,
Y. Z.
,
2019
, “
Tensile Properties of Two-Dimensional Carbon Fiber Reinforced Silicon Carbide Composites at Temperatures up to 1800 °C in Air
,”
Extreme Mech. Lett.
,
31
, p.
100546
. 10.1016/j.eml.2019.100546
16.
Qu
,
Z. L.
,
Wei
,
K.
,
He
,
Q.
,
He
,
R. J.
,
Pei
,
Y. M.
,
Wang
,
S. X.
, and
Fang
,
D. N.
,
2018
, “
High Temperature Fracture Toughness and Residual Stress in Thermal Barrier Coatings Evaluated by an In-Situ Indentation Method
,”
Ceram. Int.
,
44
(
7
), pp.
7926
7929
. 10.1016/j.ceramint.2018.01.230
17.
Li
,
W. G.
,
Yang
,
F.
, and
Fang
,
D. N.
,
2010
, “
The Temperature-Dependent Fracture Strength Model for Ultra-High Temperature Ceramics
,”
Acta Mech. Sinica
,
26
(
2
), pp.
235
239
. 10.1007/s10409-009-0326-7
18.
Wang
,
R. Z.
, and
Li
,
W. G.
,
2018
, “
Temperature and Critical Flaw Size Evolution Dependence of Fracture Strength of the Concretes
,”
Theor. Appl. Fract. Mech.
,
98
, pp.
67
71
. 10.1016/j.tafmec.2018.09.016
19.
Špaková
,
J.
,
Dusza
,
J.
, and
Juhász
,
A.
,
2008
, “
Comparison of Young`s Modulus of Si3N4 Determined by Different Methods and Dependence of Young`s Modulus on Temperature
,”
Powder Metall. Prog.
,
8
(
1
), pp.
29
34
.
20.
Ye
,
D. L.
, and
Hu
,
J. H.
,
2002
,
Handbook of Practicality Inorganic Thermodynamics
,
Metallurgical Industry Press
,
Beijing
.
21.
Hoffmann
,
M. J.
,
1995
, “
High-Temperature Properties of Si3N4 Ceramics
,”
MRS Bull.
,
20
(
2
), pp.
28
32
. 10.1557/S0883769400049186
You do not currently have access to this content.