Abstract

Fracture of polymer gels is often time- and rate-dependent. Subject to a constant load, a gel specimen may fracture immediately or after a delay (time-dependent, delayed fracture). When a crack grows in a gel, the fracture energy may depend on the crack speed (rate-dependent). The underlying mechanisms for the time- and rate-dependent fracture of gels could include local molecular processes, polymer viscoelasticity, and solvent diffusion coupled with deformation (poroelasticity). This paper focuses on the effects of poroelasticity. A path-independent, modified J-integral approach is adopted to define the crack-tip energy release rate as the energetic driving force for crack growth in gels, taking into account the energy dissipation by solvent diffusion. For a stationary crack, the energy release rate is time-dependent, with which delayed fracture can be predicted based on a Griffith-like fracture criterion. For steady-state crack growth in a long-strip specimen, the energy release rate is a function of the crack speed, with rate-dependent poroelastic toughening. With a poroelastic cohesive zone model, solvent diffusion within the cohesive zone leads to significantly enhanced poroelastic toughening as the crack speed increases, rendering a rate-dependent traction-separation relation. While most of the results are based on a linear poroelastic formulation, future studies may extend to nonlinear theories with large deformation. In addition to the poroelastic effects, other mechanisms such as viscoelasticity and local fracture processes should be studied to further understand the time and rate-dependent fracture of polymer gels.

References

References
1.
Drury
,
J. L.
, and
Mooney
,
D. J.
,
2003
, “
Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications
,”
Biomaterials
,
24
(
24
), pp.
4337
4351
. 10.1016/S0142-9612(03)00340-5
2.
Langer
,
R.
,
2006
, “
Biomaterials for Drug Delivery and Tissue Engineering
,”
MRS Bull.
,
31
(
6
), pp.
477
485
. 10.1557/mrs2006.122
3.
Peppas
,
N. A.
,
Hilt
,
J. Z.
,
Khademhosseini
,
A.
, and
Langer
,
R.
,
2006
, “
Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology
,”
Adv. Mater.
,
18
(
11
), pp.
1345
1360
. 10.1002/adma.200501612
4.
Calvert
,
P.
,
2009
, “
Hydrogels for Soft Machines
,”
Adv. Mater.
,
21
(
7
), pp.
743
756
. 10.1002/adma.200800534
5.
Suo
,
Z.
,
2012
, “
Mechanics of Stretchable Electronics and Soft Machines
,”
MRS Bull.
,
37
(
3
), pp.
218
225
. 10.1557/mrs.2012.32
6.
Yuk
,
H.
,
Lin
,
S. T.
,
Ma
,
C.
,
Takaffoli
,
M.
,
Fang
,
N. X.
, and
Zhao
,
X.
,
2017
, “
Hydraulic Hydrogel Actuators and Robots Optically and Sonically Camouflaged in Water
,”
Nat. Commun.
,
8
, p.
14230
. 10.1038/ncomms14230
7.
Yang
,
C.
, and
Suo
,
Z.
,
2018
, “
Hydrogel Ionotronics
,”
Nat. Rev. Mater.
,
3
, pp.
125
142
. 10.1038/s41578-018-0018-7
8.
Gong
,
J. P.
,
Katsuyama
,
Y.
,
Kurokawa
,
T.
, and
Osada
,
Y.
,
2003
, “
Double-Network Hydrogels With Extremely High Mechanical Strength
,”
Adv. Mater.
,
15
(
14
), pp.
1155
1158
. 10.1002/adma.200304907
9.
Sun
,
J. Y.
,
Zhao
,
X. H.
,
Illeperuma
,
W. R. K.
,
Chaudhuri
,
O.
,
Oh
,
K. H.
,
Mooney
,
D. J.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2012
, “
Highly Stretchable and Tough Hydrogels
,”
Nature
,
489
(
7414
), pp.
133
136
. 10.1038/nature11409
10.
Zhao
,
X.
,
2014
, “
Multi-scale Multi-Mechanism Design of Tough Hydrogels: Building Dissipation Into Stretchy Networks
,”
Soft Matter
,
10
(
5
), pp.
672
687
. 10.1039/C3SM52272E
11.
Long
,
R.
, and
Hui
,
C. Y.
,
2016
, “
Fracture Toughness of Hydrogels: Measurement and Interpretation
,”
Soft Matter
,
12
(
39
), pp.
8069
8086
. 10.1039/C6SM01694D
12.
Creton
,
C.
,
2017
, “
50th Anniversary Perspective: Networks and Gels: Soft but Dynamic and Tough
,”
Macromolecules
,
50
(
21
), pp.
8297
8316
. 10.1021/acs.macromol.7b01698
13.
Lefranc
,
M.
, and
Bouchaud
,
E.
,
2014
, “
Mode I Fracture of a Biopolymer gel: Rate-Dependent Dissipation and Large Deformations Disentangled
,”
Extreme Mech. Lett.
,
1
, pp.
97
103
. 10.1016/j.eml.2014.11.004
14.
Forte
,
A. E.
,
D'Amico
,
F.
,
Charalambides
,
M. N.
,
Dini
,
D.
, and
Williams
,
J. G.
,
2015
, “
Modelling and Experimental Characterisation of the Rate Dependent Fracture Properties of Gelatine Gels
,”
Food Hydrocolloid
,
46
, pp.
180
190
. 10.1016/j.foodhyd.2014.12.028
15.
Bonn
,
D.
,
Kellay
,
H.
,
Prochnow
,
M.
,
Ben-Djemiaa
,
K.
, and
Meunier
,
J.
,
1998
, “
Delayed Fracture of an Inhomogeneous Soft Solid
,”
Science
,
280
(
5361
), pp.
265
267
. 10.1126/science.280.5361.265
16.
Skrzeszewska
,
P. J.
,
Sprakel
,
J.
,
de Wolf
,
F. A.
,
Fokkink
,
R.
,
Stuart
,
M. A. C.
, and
van der Gucht
,
J.
,
2010
, “
Fracture and Self-Healing in a Well-Defined Self-Assembled Polymer Network
,”
Macromolecules
,
43
(
7
), pp.
3542
3548
. 10.1021/ma1000173
17.
Tang
,
J.
,
Li
,
J.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2017
, “
Fatigue Fracture of Hydrogels
,”
Extreme Mech. Lett.
,
10
, pp.
24
31
. 10.1016/j.eml.2016.09.010
18.
Baumberger
,
T.
,
Caroli
,
C.
, and
Martina
,
D.
,
2006
, “
Solvent Control of Crack Dynamics in a Reversible Hydrogel
,”
Nat Mater
,
5
(
7
), pp.
552
555
. 10.1038/nmat1666
19.
Wang
,
X.
, and
Hong
,
W.
,
2012
, “
Delayed Fracture in Gels
,”
Soft Matter
,
8
(
31
), pp.
8171
8178
. 10.1039/c2sm25553g
20.
Bouklas
,
N.
,
Landis
,
C. M.
, and
Huang
,
R.
,
2015
, “
Effect of Solvent Diffusion on Crack-Tip Fields and Driving Force for Fracture of Hydrogels
,”
ASME J. Appl. Mech.
,
82
(
8
), p.
081007
. 10.1115/1.4030587
21.
Atkinson
,
C.
, and
Craster
,
R. V.
,
1991
, “
Plane Strain Fracture in Poroelastic Media
,”
Proc. R. Soc. London, A
,
434
(
1892
), pp.
605
633
. 10.1098/rspa.1991.0116
22.
Hui
,
C. Y.
,
Long
,
R.
, and
Ning
,
J.
,
2013
, “
Stress Relaxation Near the Tip of a Stationary Mode I Crack in a Poroelastic Solid
,”
ASME J. Appl. Mech.
,
80
(
2
), p.
021014
. 10.1115/1.4007228
23.
Yang
,
C.-H.
, and
Lin
,
Y.-Y.
,
2018
, “
Time-Dependent Fracture of Mode-I Cracks in Poroviscoelastic Media
,”
Eur. J. Mechanics—A/Solids
,
69
, pp.
78
87
. 10.1016/j.euromechsol.2017.11.016
24.
Yu
,
Y.
,
Bouklas
,
N.
,
Landis
,
C. M.
, and
Huang
,
R.
,
2018
, “
A Linear Poroelastic Analysis of Time-Dependent Crack-Tip Fields in Polymer Gels
,”
ASME J. Appl. Mech.
,
85
(
11
), p.
111011
. 10.1115/1.4041040
25.
Noselli
,
G.
,
Lucantonio
,
A.
,
McMeeking
,
R. M.
, and
DeSimone
,
A.
,
2016
, “
Poroelastic Toughening in Polymer Gels: A Theoretical and Numerical Study
,”
J. Mech. Phys. Solids
,
94
, pp.
33
46
. 10.1016/j.jmps.2016.04.017
26.
Yu
,
Y.
,
Landis
,
C. M.
, and
Huang
,
R.
,
2018
, “
Steady-State Crack Growth in Polymer Gels: A Linear Poroelastic Analysis
,”
J. Mech. Phys. Solids
,
118
, pp.
15
39
. 10.1016/j.jmps.2018.05.008
27.
Yu
,
Y.
,
Landis
,
C. M.
, and
Huang
,
R.
,
2019
, “
Poroelastic Effects on Steady State Crack Growth in Polymer Gels Under Plane Stress
,”
Mech. Mater.
(submitted).
28.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
. 10.1115/1.3601206
29.
Yang
,
C.
,
Yin
,
T.
, and
Suo
,
Z.
,
2019
, “
Polyacrylamide Hydrogels. I. Network Imperfection
,”
J. Mech. Phys. Solids
,
131
, pp.
43
55
. 10.1016/j.jmps.2019.06.018
30.
Irwin
,
G.
,
1948
,
Fracturing of Metals
,
ASM
,
Cleveland
, p.
147
.
31.
Orowan
,
E.
,
1950
, “
Fatigue and Fracture of Metals
,”
Symposium at Massachusetts Institute of Technology
,
New York
.
32.
Knauss
,
W. G.
,
1970
, “
Delayed Failure—the Griffith Problem for Linearly Viscoelastic Materials
,”
Int. J. Fracture Mechanics
,
6
(
1
), pp.
7
20
. 10.1007/BF00183655
33.
Knauss
,
W. G.
,
1973
, “
The Mechanics of Polymer Fracture
,”
ASME Appl. Mech. Rev.
,
26
(
1
), pp.
1
17
.
34.
Schapery
,
R. A.
,
1975
, “
A Theory of Crack Initiation and Growth in Viscoelastic Media
,”
Int. J. Fract.
,
11
(
1
), pp.
141
159
. 10.1007/BF00034721
35.
Schapery
,
R. A.
,
1975
, “
A Theory of Crack Initiation and Growth in Viscoelastic Media II. Approximate Methods of Analysis
,”
Int. J. Fract.
,
11
(
3
), pp.
369
388
.
36.
Schapery
,
R. A.
,
1975
, “
A Theory of Crack Initiation and Growth in Viscoelastic Media
,”
Int. J. Fract.
,
11
(
4
), pp.
549
562
. 10.1007/BF00116363
37.
Schapery
,
R. A.
,
1984
, “
Correspondence Principles and a Generalized J Integral for Large Deformation and Fracture Analysis of Viscoelastic Media
,”
Int. J. Fract.
,
25
(
3
), pp.
195
223
. 10.1007/BF01140837
38.
Bouklas
,
N.
,
Landis
,
C. M.
, and
Huang
,
R.
,
2015
, “
A Nonlinear, Transient Finite Element Method for Coupled Solvent Diffusion and Large Deformation of Hydrogels
,”
J. Mech. Phys. Solids
,
79
, pp.
21
43
. 10.1016/j.jmps.2015.03.004
39.
Kishimoto
,
K.
,
Aoki
,
S.
, and
Sakata
,
M.
,
1980
, “
On the Path Independent Integral-J
,”
Eng. Fract. Mech.
,
13
(
4
), pp.
841
850
. 10.1016/0013-7944(80)90015-6
40.
Yang
,
F.
,
Wang
,
J.
, and
Chen
,
D.
,
2006
, “
The Energy Release Rate for Hygrothermal Coupling Elastic Materials
,”
Acta Mech. Sin.
,
22
(
1
), pp.
28
33
. 10.1007/s10409-006-0087-5
41.
Gao
,
Y. F.
, and
Zhou
,
M.
,
2013
, “
Coupled Mechano-Diffusional Driving Forces for Fracture in Electrode Materials
,”
J. Power Sources
,
230
, pp.
176
193
. 10.1016/j.jpowsour.2012.12.034
42.
Bouklas
,
N.
, and
Huang
,
R.
,
2012
, “
Swelling Kinetics of Polymer Gels: Comparison of Linear and Nonlinear Theories
,”
Soft Matter
,
8
(
31
), pp.
8194
8203
. 10.1039/c2sm25467k
43.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
(
2
), pp.
155
164
. 10.1063/1.1712886
44.
Petch
,
N. J.
, and
Stables
,
P.
,
1952
, “
Delayed Fracture of Metals Under Static Load
,”
Nature
,
169
, pp.
842
843
. 10.1038/169842a0
45.
Pearson
,
S.
,
1956
, “
Delayed Fracture of Sintered Alumina
,”
P. Phys. Soc. B
,
69
(
12
), pp.
1293
1296
. 10.1088/0370-1301/69/12/313
46.
Lindstrom
,
S. B.
,
Kodger
,
T. E.
,
Sprakel
,
J.
, and
Weitz
,
D. A.
,
2012
, “
Structures, Stresses, and Fluctuations in the Delayed Failure of Colloidal Gels
,”
Soft Matter
,
8
(
13
), pp.
3657
3664
. 10.1039/c2sm06723d
47.
Shahidzadeh-Bonn
,
N.
,
Vie
,
P.
,
Chateau
,
X.
,
Roux
,
J.-N.
, and
Bonn
,
D.
,
2015
, “
Delayed Fracture in Porous Media
,”
Phys. Rev. Lett.
,
95
(
17
), pp.
175501
. 10.1103/PhysRevLett.95.175501
48.
van der Kooij
,
H. M.
,
Dussi
,
S.
,
van de Kerkhof
,
G. T.
,
Frijns
,
R. A. M.
,
van der Gucht
,
J.
, and
Sprakel
,
J.
,
2018
, “
Laser Speckle Strain Imaging Reveals the Origin of Delayed Fracture in a Soft Solid
,”
Sci. Adv.
,
4
(
5
), p.
eaar1926
. 10.1126/sciadv.aar1926
49.
Rivlin
,
R. S.
, and
Thomas
,
A. G.
,
1953
, “
Rupture of Rubber. I. Characteristic Energy for Tearing
,”
J. Poly. Sci.
,
10
(
3
), pp.
291
318
. 10.1002/pol.1953.120100303
50.
Franca
,
L. P.
,
Frey
,
S. L.
, and
Hughes
,
T. J. R.
,
1992
, “
Stabilized Finite-Element Methods 1. Application to the Advective-Diffusive Model
,”
Comput. Meth. Appl. Mech. Eng.
,
95
(
2
), pp.
253
276
. 10.1016/0045-7825(92)90143-8
51.
Hutchinson
,
J. W.
,
1983
, “
Fundamentals of the Phenomenological Theory of Nonlinear Fracture Mechanics
,”
ASME J. Appl. Mech.
,
50
(
4b
), pp.
1042
1051
. 10.1115/1.3167187
52.
Lawn
,
B.
,
1993
,
Fracture of Brittle Solids
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
53.
Böger
,
L.
,
Keip
,
M.-A.
, and
Miehe
,
C.
,
2017
, “
Minimization and Saddle-Point Principles for the Phase-Field Modeling of Fracture in Hydrogels
,”
Comput. Mater. Sci.
,
138
, pp.
474
485
. 10.1016/j.commatsci.2017.06.010
54.
Mao
,
Y.
, and
Anand
,
L.
,
2018
, “
A Theory for Fracture of Polymeric Gels
,”
J. Mech. Phys. Solids
,
115
, pp.
30
53
. 10.1016/j.jmps.2018.02.008
You do not currently have access to this content.