Abstract

Mechanically guided three-dimensional (3D) assembly based on the controlled buckling of pre-designed 2D thin-film precursors provides deterministic routes to complex 3D mesostructures in diverse functional materials, with access to a broad range of material types and length scales. Existing mechanics studies on this topic mainly focus on the forward problem that aims at predicting the configurations of assembled 3D structures, especially ribbon-shaped structures, given the configuration of initial 2D precursor and loading magnitude. The inverse design problem that maps the target 3D structure onto an unknown 2D precursor in the context of a prescribed loading method is essential for practical applications, but remains a challenge. This paper proposes a systematic optimization method to solve the inverse design of ribbon-type 3D geometries assembled through the buckling-guided approach. In addition to the torsional angle of the cross section, this method introduces the non-uniform width distribution of the initial ribbon structure and the loading mode as additional design variables, which can significantly enhance the optimization accuracy for reproducing the desired 3D centroid line of the target ribbon. Extension of this method allows the inverse design of entire 3D ribbon configurations with specific geometries, taking into account both the centroid line and the torsion for the cross section. Computational and experimental studies over a variety of elaborate examples, encompassing both the single-ribbon and ribbon-framework structures, demonstrate the effectiveness and applicability of the developed method.

References

References
1.
Yu
,
C. J.
,
Gao
,
H.
,
Yu
,
H. Y.
,
Jiang
,
H. Q.
, and
Cheng
,
G. J.
,
2009
, “
Laser Dynamic Forming of Functional Materials Laminated Composites on Patterned Three-Dimensional Surfaces With Applications on Flexible Microelectromechanical Systems
,”
Appl. Phys. Lett.
,
95
(
9
), p.
091108
. 10.1063/1.3222863
2.
Yu
,
X.
,
Huang
,
W.
,
Li
,
M. Y.
,
Comberiate
,
T. M.
,
Gong
,
S. B.
,
Schutt-Aine
,
J. E.
, and
Li
,
X. L.
,
2015
, “
Ultra-Small, High-Frequency, and Substrate-Immune Microtube Inductors Transformed From 2D to 3D
,”
Sci. Rep.
,
5
, p.
9661
. 10.1038/srep09661
3.
Rogers
,
J.
,
Huang
,
Y. G.
,
Schmidt
,
O. G.
, and
Gracias
,
D. H.
,
2016
, “
Origami MEMS and NEMS
,”
MRS Bull.
,
41
(
2
), pp.
123
129
. 10.1557/mrs.2016.2
4.
Yu
,
X. E.
,
Wang
,
H. L.
,
Ning
,
X.
,
Sun
,
R. J.
,
Albadawi
,
H.
,
Salomao
,
M.
,
Silva
,
A. C.
,
Yu
,
Y.
,
Tian
,
L. M.
,
Koh
,
A.
,
Lee
,
C. M.
,
Chempakasseril
,
A.
,
Tian
,
P. L.
,
Pharr
,
M.
,
Yuan
,
J. H.
,
Huang
,
Y. G.
,
Oklu
,
R.
, and
Rogers
,
J. A.
,
2018
, “
Needle-Shaped Ultrathin Piezoelectric Microsystem for Guided Tissue Targeting Via Mechanical Sensing
,”
Nat. Biomed. Eng.
,
2
(
3
), pp.
165
172
. 10.1038/s41551-018-0201-6
5.
Shi
,
Y. L.
,
Wang
,
C. J.
,
Yin
,
Y. F.
,
Li
,
Y. H.
,
Xing
,
Y. F.
, and
Song
,
J. Z.
,
2019
, “
Functional Soft Composites as Thermal Protecting Substrates for Wearable Electronics
,”
Adv. Funct. Mater.
,
29
(
45
), p.
1905470
. 10.1002/adfm.201905470
6.
Alameh
,
Z.
,
Yang
,
S. Y.
,
Deng
,
Q.
, and
Sharma
,
P.
,
2018
, “
Emergent Magnetoelectricity in Soft Materials, Instability, and Wireless Energy Harvesting
,”
Soft Matter
,
14
(
28
), pp.
5856
5868
. 10.1039/C8SM00587G
7.
Nan
,
K. W.
,
Kang
,
S. D.
,
Li
,
K.
,
Yu
,
K. J.
,
Zhu
,
F.
,
Wang
,
J. T.
,
Dunn
,
A. C.
,
Zhou
,
C. Q.
,
Xie
,
Z. Q.
,
Agne
,
M. T.
,
Wang
,
H. L.
,
Luan
,
H. W.
,
Zhang
,
Y. H.
,
Huang
,
Y. G.
,
Snyder
,
G. J.
, and
Rogers
,
J. A.
,
2018
, “
Compliant and Stretchable Thermoelectric Coils for Energy Harvesting in Miniature Flexible Devices
,”
Sci. Adv.
,
4
(
11
), p.
eaau5849
. 10.1126/sciadv.aau5849
8.
Chen
,
Z.
,
Wu
,
T. H.
,
Nian
,
G. D.
,
Shan
,
Y. J.
,
Liang
,
X. Y.
,
Jiang
,
H. Q.
, and
Qu
,
S. X.
,
2019
, “
Ron Resch Origami Pattern Inspired Energy Absorption Structures
,”
ASME J. Appl. Mech.
,
86
(
1
), p.
011005
. 10.1115/1.4041415
9.
Han
,
M. D.
,
Wang
,
H. L.
,
Yang
,
Y. Y.
,
Liang
,
C. M.
,
Bai
,
W. B.
,
Yan
,
Z.
,
Li
,
H. B.
,
Xue
,
Y. G.
,
Wang
,
X. L.
,
Akar
,
B.
,
Zhao
,
H. B.
,
Luan
,
H. W.
,
Lim
,
J.
,
Kandela
,
I.
,
Ameer
,
G. A.
,
Zhang
,
Y. H.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2019
, “
Three-Dimensional Piezoelectric Polymer Microsystems for Vibrational Energy Harvesting, Robotic Interfaces and Biomedical Implants
,”
Nat. Electron.
,
2
(
1
), pp.
26
35
. 10.1038/s41928-018-0189-7
10.
Rahmati
,
A. H.
,
Yang
,
S. Y.
,
Bauer
,
S.
, and
Sharma
,
P.
,
2019
, “
Nonlinear Bending Deformation of Soft Electrets and Prospects for Engineering Flexoelectricity and Transverse (d(31)) Piezoelectricity
,”
Soft Matter
,
15
(
1
), pp.
127
148
. 10.1039/C8SM01664J
11.
Ye
,
L.
,
Liao
,
M.
,
Sun
,
H.
,
Yang
,
Y. F.
,
Tang
,
C. Q.
,
Zhao
,
Y.
,
Wang
,
L.
,
Xu
,
Y. F.
,
Zhang
,
L. J.
,
Wang
,
B. J.
,
Xu
,
F.
,
Sun
,
X. M.
,
Zhang
,
Y.
,
Dai
,
H. J.
,
Bruce
,
P. G.
, and
Peng
,
H. S.
,
2019
, “
Stabilizing Lithium Into Cross-Stacked Nanotube Sheets With an Ultra-High Specific Capacity for Lithium Oxygen Batteries
,”
Angew. Chem. Int. Ed.
,
58
(
8
), pp.
2437
2442
. 10.1002/anie.201814324
12.
Tian
,
B. Z.
,
Liu
,
J.
,
Dvir
,
T.
,
Jin
,
L. H.
,
Tsui
,
J. H.
,
Qing
,
Q.
,
Suo
,
Z. G.
,
Langer
,
R.
,
Kohane
,
D. S.
, and
Lieber
,
C. M.
,
2012
, “
Macroporous Nanowire Nanoelectronic Scaffolds for Synthetic Tissues
,”
Nat. Mater.
,
11
(
11
), pp.
986
994
. 10.1038/nmat3404
13.
Liu
,
Y.
,
Pharr
,
M.
, and
Salvatore
,
G. A.
,
2017
, “
Lab-On-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring
,”
ACS Nano
,
11
(
10
), pp.
9614
9635
. 10.1021/acsnano.7b04898
14.
Bolaños Quiñones
,
V. A. B.
,
Zhu
,
H.
,
Solovev
,
A. A.
,
Mei
,
Y. F.
, and
Gracias
,
D. H.
,
2018
, “
Origami Biosystems: 3D Assembly Methods for Biomedical Applications
,”
Adv. Biosyst.
,
2
(
12
), p.
1800230
. 10.1002/adbi.201800230
15.
Yang
,
Y. R.
, and
Gao
,
W.
,
2019
, “
Wearable and Flexible Electronics for Continuous Molecular Monitoring
,”
Chem. Soc. Rev.
,
48
(
6
), pp.
1465
1491
. 10.1039/C7CS00730B
16.
Soukoulis
,
C. M.
, and
Wegener
,
M.
,
2011
, “
Past Achievements and Future Challenges in the Development of Three-Dimensional Photonic Metamaterials
,”
Nat. Photon.
,
5
(
9
), pp.
523
530
. 10.1038/nphoton.2011.154
17.
Li
,
J.
,
Liang
,
G. Q.
,
Zhu
,
X. L.
, and
Yang
,
S.
,
2012
, “
Exploiting Nanoroughness on Holographically Patterned Three-Dimensional Photonic Crystals
,”
Adv. Funct. Mater.
,
22
(
14
), pp.
2980
2986
. 10.1002/adfm.201200013
18.
Grimm
,
D.
,
Bufon
,
C. C. B.
,
Deneke
,
C.
,
Atkinson
,
P.
,
Thurmer
,
D. J.
,
Schaffel
,
F.
,
Gorantla
,
S.
,
Bachmatiuk
,
A.
, and
Schmidt
,
O. G.
,
2013
, “
Rolled-Up Nanomembranes as Compact 3D Architectures for Field Effect Transistors and Fluidic Sensing Applications
,”
Nano Lett.
,
13
(
1
), pp.
213
218
. 10.1021/nl303887b
19.
Yu
,
C. J.
,
Duan
,
Z.
,
Yuan
,
P. X.
,
Li
,
Y. H.
,
Su
,
Y. W.
,
Zhang
,
X.
,
Pan
,
Y. P.
,
Dai
,
L. L.
,
Nuzzo
,
R. G.
,
Huang
,
Y. G.
,
Jiang
,
H. Q.
, and
Rogers
,
J. A.
,
2013
, “
Electronically Programmable, Reversible Shape Change in Two- and Three-Dimensional Hydrogel Structures
,”
Adv. Mater.
,
25
(
11
), pp.
1541
1546
. 10.1002/adma.201204180
20.
Palucka
,
T.
,
2014
, “
Mechanical Metamaterials Produce Ultralight, Ultrastiff Lattices
,”
MRS Bull.
,
39
(
9
), pp.
759
760
. 10.1557/mrs.2014.203
21.
Zheng
,
X. Y.
,
Lee
,
H.
,
Weisgraber
,
T. H.
,
Shusteff
,
M.
,
DeOtte
,
J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
,
Biener
,
M. M.
,
Ge
,
Q.
,
Jackson
,
J. A.
,
Kucheyev
,
S. O.
,
Fang
,
N. X.
, and
Spadaccini
,
C. M.
,
2014
, “
Ultralight, Ultrastiff Mechanical Metamaterials
,”
Science
,
344
(
6190
), pp.
1373
1377
. 10.1126/science.1252291
22.
Ma
,
Q.
, and
Zhang
,
Y. H.
,
2016
, “
Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111008
. 10.1115/1.4034458
23.
Overvelde
,
J. T. B.
,
de Jong
,
T. A.
,
Shevchenko
,
Y.
,
Becerra
,
S. A.
,
Whitesides
,
G. M.
,
Weaver
,
J. C.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2016
, “
A Three-Dimensional Actuated Origami-Inspired Transformable Metamaterial With Multiple Degrees of Freedom
,”
Nat. Commun.
,
7
, p.
10929
. 10.1038/ncomms10929
24.
Overvelde
,
J. T. B.
,
Weaver
,
J. C.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2017
, “
Rational Design of Reconfigurable Prismatic Architected Materials
,”
Nature
,
541
(
7637
), pp.
347
352
. 10.1038/nature20824
25.
Wang
,
F.
,
Guo
,
X. G.
,
Xu
,
J. X.
,
Zhang
,
Y. H.
, and
Chen
,
C. Q.
,
2017
, “
Patterning Curved Three-Dimensional Structures With Programmable Kirigami Designs
,”
ASME J. Appl. Mech.
,
84
(
6
), p.
061007
. 10.1115/1.4036476
26.
Liu
,
J. X.
, and
Zhang
,
Y. H.
,
2018
, “
A Mechanics Model of Soft Network Materials With Periodic Lattices of Arbitrarily Shaped Filamentary Microstructures for Tunable Poisson’s Ratios
,”
ASME J. Appl. Mech.
,
85
(
5
), p.
051003
. 10.1115/1.4039374
27.
Xu
,
S.
,
Yan
,
Z.
,
Jang
,
K. I.
,
Huang
,
W.
,
Fu
,
H. R.
,
Kim
,
J.
,
Wei
,
Z.
,
Flavin
,
M.
,
McCracken
,
J.
,
Wang
,
R.
,
Badea
,
A.
,
Liu
,
Y.
,
Xiao
,
D. Q.
,
Zhou
,
G. Y.
,
Lee
,
J.
,
Chung
,
H. U.
,
Cheng
,
H. Y.
,
Ren
,
W.
,
Banks
,
A.
,
Li
,
X. L.
,
Paik
,
U.
,
Nuzzo
,
R. G.
,
Huang
,
Y. G.
,
Zhang
,
Y. H.
, and
Rogers
,
J. A.
,
2015
, “
Assembly of Micro/Nanomaterials Into Complex, Three-Dimensional Architectures by Compressive Buckling
,”
Science
,
347
(
6218
), pp.
154
159
. 10.1126/science.1260960
28.
Zhang
,
Y. H.
,
Yan
,
Z.
,
Nan
,
K. W.
,
Xiao
,
D. Q.
,
Liu
,
Y. H.
,
Luan
,
H. W.
,
Fu
,
H. R.
,
Wang
,
X. Z.
,
Yang
,
Q. L.
,
Wang
,
J. C.
,
Ren
,
W.
,
Si
,
H. Z.
,
Liu
,
F.
,
Yang
,
L. H.
,
Li
,
H. J.
,
Wang
,
J. T.
,
Guo
,
X. L.
,
Luo
,
H. Y.
,
Wang
,
L.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2015
, “
A Mechanically Driven Form of Kirigami as a Route to 3D Mesostructures in Micro/Nanomembranes
,”
Proc. Natl. Acad. Sci. U.S.A.
,
112
(
38
), pp.
11757
11764
. 10.1073/pnas.1515602112
29.
Yan
,
Z.
,
Zhang
,
F.
,
Liu
,
F.
,
Han
,
M. D.
,
Ou
,
D. P.
,
Liu
,
Y. H.
,
Lin
,
Q.
,
Guo
,
X. L.
,
Fu
,
H. R.
,
Xie
,
Z. Q.
,
Gao
,
M. Y.
,
Huang
,
Y. M.
,
Kim
,
J.
,
Qiu
,
Y. T.
,
Nan
,
K. W.
,
Kim
,
J.
,
Gutruf
,
P.
,
Luo
,
H. Y.
,
Zhao
,
A.
,
Hwang
,
K. C.
,
Huang
,
Y. G.
,
Zhang
,
Y. H.
, and
Rogers
,
J. A.
,
2016
, “
Mechanical Assembly of Complex, 3D Mesostructures From Releasable Multilayers of Advanced Materials
,”
Sci. Adv.
,
2
(
9
), p.
e1601014
. 10.1126/sciadv.1601014
30.
Nan
,
K. W.
,
Luan
,
H. W.
,
Yan
,
Z.
,
Ning
,
X.
,
Wang
,
Y. Q.
,
Wang
,
A.
,
Wang
,
J. T.
,
Han
,
M. D.
,
Chang
,
M.
,
Li
,
K.
,
Zhang
,
Y. T.
,
Huang
,
W.
,
Xue
,
Y. G.
,
Huang
,
Y. G.
,
Zhang
,
Y. H.
, and
Rogers
,
J. A.
,
2017
, “
Engineered Elastomer Substrates for Guided Assembly of Complex 3D Mesostructures by Spatially Nonuniform Compressive Buckling
,”
Adv. Funct. Mater.
,
27
(
1
), p.
1604281
. 10.1002/adfm.201604281
31.
Wang
,
X. J.
,
Guo
,
X. G.
,
Ye
,
J. L.
,
Zheng
,
N.
,
Kohli
,
P.
,
Choi
,
D. W.
,
Zhang
,
Y.
,
Xie
,
Z. Q.
,
Zhang
,
Q. H.
,
Luan
,
H. W.
,
Nan
,
K. W.
,
Kim
,
B. H.
,
Xu
,
Y. M.
,
Shan
,
X. W.
,
Bai
,
W. B.
,
Sun
,
R. J.
,
Wang
,
Z. Z.
,
Jang
,
H. Y.
,
Zhang
,
F.
,
Ma
,
Y. J.
,
Xu
,
Z.
,
Feng
,
X.
,
Xie
,
T.
,
Huang
,
Y. G.
,
Zhang
,
Y. H.
, and
Rogers
,
J. A.
,
2019
, “
Freestanding 3D Mesostructures, Functional Devices, and Shape-Programmable Systems Based on Mechanically Induced Assembly With Shape Memory Polymers
,”
Adv. Mater.
,
31
(
2
), p.
1805615
. 10.1002/adma.201805615
32.
Zhang
,
Y. H.
,
Zhang
,
F.
,
Yan
,
Z.
,
Ma
,
Q.
,
Li
,
X. L.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2017
, “
Printing, Folding and Assembly Methods for Forming 3D Mesostructures in Advanced Materials
,”
Nat. Rev. Mater.
,
2
(
4
), p.
17019
. 10.1038/natrevmats.2017.19
33.
Lee
,
W.
,
Liu
,
Y.
,
Lee
,
Y.
,
Sharma
,
B. K.
,
Shinde
,
S. M.
,
Kim
,
S. D.
,
Nan
,
K.
,
Yan
,
Z.
,
Han
,
M. D.
,
Huang
,
Y. G.
,
Zhang
,
Y. H.
,
Ahn
,
J. H.
, and
Rogers
,
J. A.
,
2018
, “
Two-Dimensional Materials in Functional Three-Dimensional Architectures With Applications in Photodetection and Imaging
,”
Nat. Commun.
,
9
(
1
), p.
1417
. 10.1038/s41467-018-03870-0
34.
Ning
,
X.
,
Yu
,
X. G.
,
Wang
,
H. L.
,
Sun
,
R. J.
,
Corman
,
R. E.
,
Li
,
H. B.
,
Lee
,
C. M.
,
Xue
,
Y. G.
,
Chempakasseril
,
A.
,
Yao
,
Y.
,
Zhang
,
Z. Q.
,
Luan
,
H. W.
,
Wang
,
Z. Z.
,
Xia
,
W.
,
Feng
,
X.
,
Ewoldt
,
R. H.
,
Huang
,
Y. G.
,
Zhang
,
Y. H.
, and
Rogers
,
J. A.
,
2018
, “
Mechanically Active Materials in Three-Dimensional Mesostructures
,”
Sci. Adv.
,
4
(
9
), p.
eaat8313
. 10.1126/sciadv.aat8313
35.
Xie
,
Z. Q.
,
Ji
,
B. W.
, and
Huo
,
Q. Z.
,
2018
, “
Mechanics Design of Stretchable Near Field Communication Antenna With Serpentine Wires
,”
ASME J. Appl. Mech.
,
85
(
4
), p.
045001
. 10.1115/1.4039102
36.
Liu
,
F.
,
Chen
,
Y.
,
Song
,
H. L.
,
Zhang
,
F.
,
Fan
,
Z. C.
,
Liu
,
Y.
,
Feng
,
X.
,
Rogers
,
J. A.
,
Huang
,
Y. G.
, and
Zhang
,
Y. H.
,
2019
, “
High Performance, Tunable Electrically Small Antennas Through Mechanically Guided 3D Assembly
,”
Small
,
15
(
1
), p.
1804055
. 10.1002/smll.201804055
37.
Yan
,
Z.
,
Zhang
,
F.
,
Wang
,
J. C.
,
Liu
,
F.
,
Guo
,
X. L.
,
Nan
,
K. W.
,
Lin
,
Q.
,
Gao
,
M. Y.
,
Xiao
,
D. Q.
,
Shi
,
Y.
,
Qiu
,
Y. T.
,
Luan
,
H. W.
,
Kim
,
J. H.
,
Wang
,
Y. Q.
,
Luo
,
H. Y.
,
Han
,
M. D.
,
Huang
,
Y. G.
,
Zhang
,
Y. H.
, and
Rogers
,
J. A.
,
2016
, “
Controlled Mechanical Buckling for Origami-Inspired Construction of 3D Microstructures in Advanced Materials
,”
Adv. Funct. Mater.
,
26
(
16
), pp.
2629
2639
. 10.1002/adfm.201504901
38.
Luan
,
H. W.
,
Cheng
,
X.
,
Wang
,
A.
,
Zhao
,
S. W.
,
Bai
,
K.
,
Wang
,
H. L.
,
Pang
,
W. B.
,
Xie
,
Z. Q.
,
Li
,
K.
,
Zhang
,
F.
,
Xue
,
Y. G.
,
Huang
,
Y. G.
, and
Zhang
,
Y. H.
,
2019
, “
Design and Fabrication of Heterogeneous, Deformable Substrates for the Mechanically Guided 3D Assembly
,”
ACS Appl. Mater. Int.
,
11
(
3
), pp.
3482
3492
. 10.1021/acsami.8b19187
39.
Zhao
,
H. B.
,
Li
,
K.
,
Han
,
M. D.
,
Zhu
,
F.
,
Vázquez-Guardado
,
A.
,
Guo
,
P. J.
,
Xie
,
Z. Q.
,
Park
,
Y.
,
Chen
,
L.
,
Wang
,
X. J.
,
Luan
,
H. W.
,
Yang
,
Y. Y.
,
Wang
,
H. L.
,
Liang
,
C. M.
,
Xue
,
Y. G.
,
Schaller
,
R. D.
,
Chanda
,
D.
,
Huang
,
Y. G.
,
Zhang
,
Y. H.
, and
Rogers
,
J. A.
,
2019
, “
Buckling and Twisting of Advanced Materials Into Morphable 3D Mesostructures
,”
Proc. Natl. Acad. Sci. U.S.A.
,
116
(
27
), pp.
13239
13248
. 10.1073/pnas.1901193116
40.
Cai
,
M.
,
Nie
,
S.
,
Du
,
Y. P.
,
Wang
,
C. J.
, and
Song
,
J. Z.
,
2019
, “
Soft Elastomers With Programmable Stiffness as Strain-Isolating Substrates for Stretchable Electronics
,”
ACS Appl. Mater. Int.
,
11
(
15
), pp.
14340
14346
. 10.1021/acsami.9b01551
41.
Yan
,
Z.
,
Han
,
M. D.
,
Shi
,
Y.
,
Badea
,
A.
,
Yang
,
Y. Y.
,
Kulkarni
,
A.
,
Hanson
,
E.
,
Kandel
,
M. E.
,
Wen
,
X. W.
,
Zhang
,
F.
,
Luo
,
Y. Y.
,
Lin
,
Q.
,
Zhang
,
H.
,
Guo
,
X. G.
,
Huang
,
Y. M.
,
Nan
,
K. W.
,
Jia
,
S.
,
Oraham
,
A. W.
,
Mevis
,
M. B.
,
Lim
,
J. M.
,
Guo
,
X. L.
,
Gao
,
M. Y.
,
Ryu
,
W.
,
Yu
,
K. J.
,
Nicolau
,
B. G.
,
Petronico
,
A.
,
Rubakhin
,
S. S.
,
Lou
,
J.
,
Ajayan
,
P. M.
,
Thornton
,
K.
,
Popescu
,
G.
,
Fang
,
D. N.
,
Sweedler
,
J. V.
,
Braun
,
P. V.
,
Zhang
,
H. X.
,
Nuzzo
,
R. G.
,
Huang
,
Y. G.
,
Zhang
,
Y. H.
, and
Rogers
,
J. A.
,
2017
, “
Three-Dimensional Mesostructures as High-Temperature Growth Templates, Electronic Cellular Scaffolds, and Self-Propelled Microrobots
,”
Proc. Natl. Acad. Sci. U.S.A.
,
114
(
45
), pp.
E9455
E9464
. 10.1073/pnas.1713805114
42.
Fu
,
H. R.
,
Nan
,
K. W.
,
Bai
,
W. B.
,
Huang
,
W.
,
Bai
,
K.
,
Lu
,
L. Y.
,
Zhou
,
C. Q.
,
Liu
,
Y. P.
,
Liu
,
F.
,
Wang
,
J. T.
,
Han
,
M. D.
,
Yan
,
Z.
,
Luan
,
H. W.
,
Zhang
,
Y. J.
,
Zhang
,
Y. T.
,
Zhao
,
J. N.
,
Cheng
,
X.
,
Li
,
M. Y.
,
Lee
,
J. W.
,
Liu
,
Y.
,
Fang
,
D. N.
,
Li
,
X. L.
,
Huang
,
Y. G.
,
Zhang
,
Y. H.
, and
Rogers
,
J. A.
,
2018
, “
Morphable 3D Mesostructures and Microelectronic Devices by Multistable Buckling Mechanics
,”
Nat. Mater.
,
17
(
3
), pp.
268
276
.10.1038/s41563-017-0011-3
43.
Cheng
,
X.
, and
Zhang
,
Y. H.
,
2019
, “
Micro/Nanoscale 3D Assembly by Rolling, Folding, Curving, and Buckling Approaches
,”
Adv. Mater.
,
31
(
36
), p.
1901895
. 10.1002/adma.201901895
44.
Liu
,
Y.
,
Wang
,
X. J.
,
Xu
,
Y. M.
,
Xue
,
Z. G.
,
Zhang
,
Y.
,
Ning
,
X.
,
Cheng
,
X.
,
Xue
,
Y. G.
,
Lu
,
D.
,
Zhang
,
Q. H.
,
Zhang
,
F.
,
Liu
,
J. X.
,
Guo
,
X. G.
,
Hwang
,
K. C.
,
Huang
,
Y. G.
,
Rogers
,
J. A.
, and
Zhang
,
Y. H.
,
2019
, “
Harnessing the Interface Mechanics of Hard Films and Soft Substrates for 3D Assembly by Controlled Buckling
,”
Proc. Natl. Acad. Sci. U.S.A.
,
116
(
31
), pp.
15368
15377
. 10.1073/pnas.1907732116
45.
Chen
,
Y. L.
,
Zhu
,
Y.
,
Chen
,
X.
, and
Liu
,
Y. L.
,
2016
, “
Mechanism of the Transition From In-Plane Buckling to Helical Buckling for a Stiff Nanowire on an Elastomeric Substrate
,”
ASME J. Appl. Mech.
,
83
(
4
), p.
041011
. 10.1115/1.4032573
46.
Fan
,
Z. C.
,
Wu
,
J.
,
Ma
,
Q.
,
Liu
,
Y.
,
Su
,
Y. W.
, and
Hwang
,
K. C.
,
2017
, “
Post-Buckling Analysis of Curved Beams
,”
ASME J. Appl. Mech.
,
84
(
3
), p.
031007
. 10.1115/1.4035534
47.
Fan
,
Z. C.
,
Hwang
,
K. C.
,
Rogers
,
J. A.
,
Huang
,
Y. G.
, and
Zhang
,
Y. H.
,
2018
, “
A Double Perturbation Method of Postbuckling Analysis in 2D Curved Beams for Assembly of 3D Ribbon-Shaped Structures
,”
J. Mech. Phys. Solids
,
111
, pp.
215
238
. 10.1016/j.jmps.2017.10.012
48.
Li
,
H. B.
,
Wang
,
X.
,
Zhu
,
F.
,
Ning
,
X.
,
Wang
,
H. L.
,
Rogers
,
J. A.
,
Zhang
,
Y. H.
, and
Huang
,
Y. G.
,
2018
, “
Viscoelastic Characteristics of Mechanically Assembled Three-Dimensional Structures Formed by Compressive Buckling
,”
ASME J. Appl. Mech.
,
85
(
12
), p.
121002
. 10.1115/1.4041163
49.
Zhang
,
F.
,
Fan
,
Z. C.
, and
Zhang
,
Y. H.
,
2018
, “
A Theoretical Model of Postbuckling in Straight Ribbons With Engineered Thickness Distributions for Three-Dimensional Assembly
,”
Int. J Solids Struct.
,
147
, pp.
254
271
. 10.1016/j.ijsolstr.2018.05.030
50.
Liu
,
Y.
,
Xu
,
Z.
,
Hwang
,
K. C.
,
Huang
,
Y. G.
, and
Zhang
,
Y. H.
,
2019
, “
Postbuckling Analyses of Frame Mesostructures Consisting of Straight Ribbons for Mechanically Guided Three-Dimensional Assembly
,”
Proc. R. Soc. Lond. Ser. A
,
475
(
2225
), p.
20190012
. 10.1098/rspa.2019.0012
51.
Zhou
,
Y.
,
Yi
,
Z. P.
, and
Stanciulescu
,
I.
,
2019
, “
Nonlinear Buckling and Postbuckling of Shallow Arches With Vertical Elastic Supports
,”
ASME J. Appl. Mech.
,
86
(
6
), p.
061001
. 10.1115/1.4042572
52.
Xue
,
R. Y.
,
Li
,
R.
,
Du
,
Z. L.
,
Zhang
,
W. S.
,
Zhu
,
Y. C.
,
Sun
,
Z.
, and
Guo
,
X.
,
2017
, “
Kirigami Pattern Design of Mechanically Driven Formation of Complex 3D Structures Through Topology Optimization
,”
Extreme Mech. Lett.
,
15
, pp.
139
144
. 10.1016/j.eml.2017.03.004
53.
Xu
,
Z.
,
Fan
,
Z. C.
,
Fu
,
H. R.
,
Liu
,
Y.
,
Zi
,
Y. Y.
,
Huang
,
Y. G.
, and
Zhang
,
Y. H.
,
2019
, “
Optimization-Based Approach for the Inverse Design of Ribbon-Shaped Three-Dimensional Structures Assembled Through Compressive Buckling
,”
Phys. Rev. Appl.
,
11
(
5
), p.
054053
. 10.1103/PhysRevApplied.11.054053
54.
Davis
,
L.
,
1991
,
Handbook of Genetic Algorithms
,
Van Nostrand Reinhold
,
New York
.
55.
Srinivas
,
M.
, and
Patnaik
,
L. M.
,
1994
, “
Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms
,”
IEEE Trans. Syst. Man Cybern.
,
24
(
4
), pp.
656
667
. 10.1109/21.286385
56.
Fortin
,
F. A.
,
De Rainville
,
F. M.
,
Gardner
,
M. A.
,
Parizeau
,
M.
, and
Gagne
,
C.
,
2012
, “
DEAP: Evolutionary Algorithms Made Easy
,”
J. Mach. Learn Res.
,
13
, pp.
2171
2175
. 10.1145/2330784.2330799
57.
Huang
,
Y.
, and
Li
,
X. F.
,
2011
, “
Buckling Analysis of Nonuniform and Axially Graded Columns With Varying Flexural Rigidity
,”
J. Eng. Mech.
,
137
(
1
), pp.
73
81
. 10.1061/(ASCE)EM.1943-7889.0000206
58.
Jiao
,
P. C.
,
Borchani
,
W.
,
Hasni
,
H.
, and
Lajnef
,
N.
,
2017
, “
Enhancement of Quasi-Static Strain Energy Harvesters Using Non-Uniform Cross-Section Post-Buckled Beams
,”
Smart Mater. Struct.
,
26
(
8
), p.
085045
. 10.1088/1361-665X/aa746e
59.
Luo
,
G. Q.
,
Fu
,
H. R.
,
Cheng
,
X.
,
Bai
,
K.
,
Shi
,
L. P.
,
He
,
X. D.
,
Rogers
,
J. A.
,
Huang
,
Y. G.
, and
Zhang
,
Y. H.
,
2019
, “
Mechanics of Bistable Cross-Shaped Structures Through Loading-Path Controlled 3D Assembly
,”
J. Mech. Phys. Solids
,
129
, pp.
261
277
. 10.1016/j.jmps.2019.05.007
You do not currently have access to this content.