Abstract

The shear strength of a pre-cracked sandwich layer is predicted, assuming that the layer is linear elastic or elastic-plastic, with yielding characterized either by the J2 plasticity theory or by a strip-yield model. The substrates are elastic and of dissimilar modulus to that of the layer. Two geometries are analyzed: (i) a semi-infinite crack in a sandwich layer, subjected to a remote mode II K-field and (ii) a center-cracked sandwich plate of finite width under remote shear stress. For the semi-infinite crack, the near-tip stress field is determined as a function of elastic mismatch, and crack tip plasticity is either prevented (the elastic case) or duly accounted for (the elastic-plastic case). Analytical and numerical solutions are then obtained for the center-cracked sandwich plate of the finite width. First, a mode II K-calibration is obtained for a finite crack in the elastic sandwich layer. Second, the analysis is extended to account for crack tip plasticity via a mode II strip-yield model of finite strength and finite toughness. The analytical predictions are verified by finite element simulations, and a failure map is constructed in terms of specimen geometry and crack length.

References

1.
Camanho
,
P. P.
, and
Tong
,
L.
,
2011
,
Composite Joints and Connections: Principles, Modelling and Testing
,
Woodhead Publishing
,
Cambridge
.
2.
da Silva
,
L. F. M.
,
Öchsner
,
A.
, and
Adams
,
R. D.
,
2011
,
Handbook of Adhesion Technology
,
Springer-Verlag
,
Berlin, Heidelberg
.
3.
Chai
,
H.
, and
Chiang
,
M. Y. M.
,
1996
, “
A Crack Propagation Criterion Based on Local Shear Strain in Adhesive Bonds Subjected to Shear
,”
J. Mech. Phys. Solids
,
44
(
10
), pp.
1669
1689
. 10.1016/0022-5096(96)00048-8
4.
Blackman
,
B. R. K.
,
Kinloch
,
A. J.
, and
Paraschi
,
M.
,
2005
, “
The Determination of the Mode II Adhesive Fracture Resistance, GIIC, of Structural Adhesive Joints: An Effective Crack Length Approach
,”
Eng. Fract. Mech.
,
72
(
6 SPEC. ISS.
), pp.
877
897
. 10.1016/j.engfracmech.2004.08.007
5.
da Silva
,
L. F.
,
de Magalhães
,
F. A.
,
Chaves
,
F. J.
, and
de Moura
,
M. F.
,
2010
, “
Mode II Fracture Toughness of a Brittle and a Ductile Adhesive as a Function of the Adhesive Thickness
,”
J. Adhes.
,
86
(
9
), pp.
889
903
. 10.1080/00218464.2010.506155
6.
de Moura
,
M. F. S. F.
,
Campilho
,
R. D. S. G.
, and
Gonçalves
,
J. P. M.
,
2009
, “
Pure Mode II Fracture Characterization of Composite Bonded Joints
,”
Int. J. Solids Struct.
,
46
(
6
), pp.
1589
1595
. 10.1016/j.ijsolstr.2008.12.001
7.
Yang
,
Q. D.
,
Thouless
,
M. D.
, and
Ward
,
S. M.
,
2001
, “
Elastic-Plastic Mode-II Fracture of Adhesive Joints
,”
Int. J. Solids Struct.
,
38
(
18
), pp.
3251
3262
. 10.1016/S0020-7683(00)00221-3
8.
Chen
,
C. C.
, and
Linzell
,
D. G.
,
2010
, “
Modeling End Notched Flexure Tests to Establish Cohesive Element Mode II Fracture Parameters
,”
Eng. Fract. Mech.
,
77
(
8
), pp.
1338
1347
. 10.1016/j.engfracmech.2010.03.017
9.
Dourado
,
N.
,
de Moura
,
M. F. S. F.
,
de Morais
,
A. B.
, and
Pereira
,
A. B.
,
2012
, “
Bilinear Approximations to the Mode II Delamination Cohesive Law Using an Inverse Method
,”
Mech. Mater.
,
49
, pp.
42
50
. 10.1016/j.mechmat.2012.02.004
10.
Fernandes
,
R. M. R. P.
,
Chousal
,
J. A. G.
,
de Moura
,
M. F. S. F.
, and
Xavier
,
J.
,
2013
, “
Determination of Cohesive Laws of Composite Bonded Joints Under Mode II Loading
,”
Compos. Part B Eng.
,
52
, pp.
269
274
. 10.1016/j.compositesb.2013.04.007
11.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
. 10.1016/0022-5096(60)90013-2
12.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
. 10.1115/1.3601206
13.
Williams
,
M. L.
,
1957
, “
On the Stress Distribution at the Base of a Stationary Crack
,”
ASME J. Appl. Mech.
,
24
(
1
), pp.
109
114
.
14.
Dundurs
,
J.
,
1969
, “
Edge-Bonded Dissimilar Orthogonal Elastic Wedges Under Normal and Shear Loading
,”
ASME J. Appl. Mech.
,
36
(
3
), pp.
650
652
. 10.1115/1.3564739
15.
Hutchinson
,
J. W.
, and
Suo
,
Z.
,
1991
, “
Mixed Mode Cracking in Layered Materials
,”
Adv. Appl. Mech.
,
29
, pp.
63
191
. 10.1016/S0065-2156(08)70164-9
16.
Fleck
,
N. A.
,
Hutchinson
,
J. W.
, and
Zhigang
,
S.
,
1991
, “
Crack Path Selection in a Brittle Adhesive Layer
,”
Int. J. Solids Struct.
,
27
(
13
), pp.
1683
1703
. 10.1016/0020-7683(91)90069-R
17.
Hutchinson
,
J. W.
,
Mear
,
M. E.
, and
Rice
,
J. R.
,
1987
, “
Crack Paralleling an Interface Between Dissimilar Materials
,”
ASME J. Appl. Mech.
,
54
(
4
), pp.
828
832
. 10.1115/1.3173124
18.
Suo
,
Z.
, and
Hutchinson
,
J. W.
,
1989
, “
Sandwich Test Specimens for Measuring Interface Crack Toughness
,”
Mater. Sci. Eng. A
,
107
(
C
), pp.
135
143
. 10.1016/0921-5093(89)90382-1
19.
del Busto
,
S.
,
Betegón
,
C.
, and
Martínez-Pañeda
,
E.
,
2017
, “
A Cohesive Zone Framework for Environmentally Assisted Fatigue
,”
Eng. Fract. Mech.
,
185
, pp.
210
226
. 10.1016/j.engfracmech.2017.05.021
20.
ASTM E 1820-01
,
2018
,
Standard Test Method for Measurement of Fracture Toughness
,
ASTM International
,
West Conshohocken, PA
.
21.
Blackman
,
B. R. K.
,
Hadavinia
,
H.
,
Kinloch
,
A. J.
,
Paraschi
,
M.
, and
Williams
,
J. G.
,
2003
, “
The Calculation of Adhesive Fracture Energies in Mode I: Revisiting the Tapered Double Cantilever Beam (TDCB) Test
,”
Eng. Fract. Mech.
,
70
(
2
), pp.
233
248
. 10.1016/S0013-7944(02)00031-0
22.
Salomonsson
,
K.
, and
Andersson
,
T.
,
2008
, “
Modeling and Parameter Calibration of An Adhesive Layer At the Meso Level
,”
Mech. Mater.
,
40
(
1–2
), pp.
48
65
. 10.1016/j.mechmat.2007.06.004
23.
Sun
,
C.
,
Thouless
,
M. D.
,
Waas
,
A. M.
,
Schroeder
,
J. A.
, and
Zavattieri
,
P. D.
,
2008
, “
Ductile–Brittle Transitions in the Fracture of Plastically Deforming, Adhesively Bonded Structures. Part II: Numerical Studies
,”
Int. J. Solids Struct.
,
45
(
17
), pp.
4725
4738
. 10.1016/j.ijsolstr.2008.04.007
24.
Sun
,
C.
,
Thouless
,
M. D.
,
Waas
,
A. M.
,
Schroeder
,
J. A.
, and
Zavattieri
,
P. D.
,
2008
, “
Ductile–Brittle Transitions in the Fracture Part I: Experimental Studies
,”
Int. J. Solids Struct.
,
45
(
10
), pp.
3059
3073
. 10.1016/j.ijsolstr.2008.01.011
25.
Carlberger
,
T.
, and
Stigh
,
U.
,
2010
, “
Influence of Layer Thickness on Cohesive Properties of an Epoxy-Based Adhesive—An Experimental Study
,”
J. Adhes.
,
86
(
8
), pp.
814
833
. 10.1080/00218464.2010.498718
26.
Stigh
,
U.
,
Alfredsson
,
K. S.
,
Andersson
,
T.
,
Biel
,
A.
,
Carlberger
,
T.
, and
Salomonsson
,
K.
,
2010
, “
Some Aspects of Cohesive Models and Modelling With Special Application to Strength of Adhesive Layers
,”
Int. J. Fract.
,
165
(
2
), pp.
149
162
. 10.1007/s10704-010-9458-9
27.
Van Loock
,
F.
,
Thouless
,
M. D.
, and
Fleck
,
N. A.
,
2019
, “
Tensile Fracture of an Adhesive Joint: The Role of Crack Length and of Material Mismatch
,”
J. Mech. Phys. Solids
,
130
, pp.
330
348
. 10.1016/j.jmps.2019.06.004
28.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1994
, “
Toughness of an Interface Along a Thin Ductile Layer Joining Elastic Solids
,”
Philos. Mag. A Phys. Condens. Matter, Struct., Defects Mech. Prop.
,
70
(
4
), pp.
641
656
. 10.1080/01418619408242253
29.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1996
, “
On the Toughness of Ductile Adhesive Joints
,”
J. Mech. Phys. Solids
,
44
(
5
), pp.
789
800
. 10.1016/0022-5096(96)00011-7
30.
Tada
,
H.
,
Paris
,
P.
, and
Irwin
,
G.
,
2000
,
The Stress Analysis of Cracks Handbook
, 3rd ed.,
ASME Press
,
New York, NY
.
31.
Martínez-Pañeda
,
E.
, and
Fleck
,
N. A.
,
2018
, “
Crack Growth Resistance in Metallic Alloys: The Role of Isotropic Versus Kinematic Hardening
,”
ASME J. Appl. Mech.
,
85
(
11
), p.
011002
. 10.1115/1.4038285
You do not currently have access to this content.