Abstract

Polydomain nematic sheets can be designed for desired shape transition, and a typical example is a disc composed of congruent wedges with rank-1 connected director field. Recent theoretical study indicated that such a disc, if infinitesimally thin, tends to become a perfect pyramid upon illumination. Nonetheless, what is the influence of the finite thickness remains unexplored. In the present work, we reexamine this problem by treating the disc as an elastic plate with finite thickness. Analytical solution to the photo-actuated shape is obtained in small deformations, and the influences of the number of domains and the attenuation of photo intensity are discussed in detail. The results are expected helpful to the design of related photo-responsive devices.

References

References
1.
Warner
,
M.
, and
Terentjev
,
E. M.
,
2003
,
Liquid Crystal Elastomers
,
Clarendon Press
,
Oxford
.
2.
Finkelmann
,
H.
,
Nishikawa
,
E.
,
Pereira
,
G. G.
, and
Warner
,
M.
,
2001
, “
New Ptomechanical Effect in Solids
,”
Phys. Rev. Lett.
,
87
(
1
), p.
015501
. 10.1103/PhysRevLett.87.015501
3.
Hogan
,
P. M.
,
Tajbakhsh
,
A. R.
, and
Terentjev
,
E. M.
,
2002
, “
UV Manipulation of Order and Macroscopic Shape in Nematic Elastomers
,”
Phys. Rev. E
,
65
(
4
), p.
041720
. 10.1103/PhysRevE.65.041720
4.
van Oosten
,
C. L.
,
Harris
,
K. D.
,
Bastiaansen
,
C. W. M.
, and
Broer
,
D. J.
,
2007
, “
Glassy Photome- Chanical Liquid-Crystal Network Actuators for Microscale Devices
,”
Eur. Phys. J. E
,
23
(
3
), pp.
329
336
. 10.1140/epje/i2007-10196-1
5.
McConney
,
M. E.
,
Martinez
,
A.
,
Tondiglia
,
V. P.
,
Lee
,
K. M.
,
Langley
,
D.
,
Smalyukh
,
I. I.
, and
White
,
T. J.
,
2013
, “
Topography From Topology: Photoinduced Surface Features Generated in Liquid Crystal Polymer Networks
,”
Adv. Mater.
,
25
(
41
), pp.
5880
5885
. 10.1002/adma.201301891
6.
de Haan
,
L. T.
,
Schenning
,
A. P. H. J.
, and
Broer
,
D. J.
,
2014
, “
Programmed Morphing of Liquid Crystal Networks
,”
Polymer
,
55
(
23
), pp.
5885
5896
. 10.1016/j.polymer.2014.08.023
7.
Ware
,
T. H.
,
McConney
,
M. E.
,
Wie
,
J. J.
,
Tondiglia
,
V. P.
, and
White
,
T. J.
,
2015
, “
Voxelated Liquid Crystal Elastomers
,”
Science
,
347
(
6225
), pp.
982
984
. 10.1126/science.1261019
8.
White
,
T. J.
, and
Broer
,
D. J.
,
2015
, “
Programmable and Adaptive Mechanics With Liquid Crystal Polymer Networks and Elastomers
,”
Nat. Mater.
,
14
(
11
), pp.
1087
1098
. 10.1038/nmat4433
9.
Modes
,
C. D.
, and
Warner
,
M.
,
2016
, “
Shape-Programmable Materials
,”
Phys. Today
,
69
(
1
), pp.
32
38
. 10.1063/PT.3.3051
10.
de Haan
,
L. T.
,
Sánchez-Somolinos
,
C.
,
Bastiaansen
,
C. M. W.
,
Schenning
,
A. P. H. J.
, and
Broer
,
D. J.
,
2012
, “
Engineering of Complex Order and the Macroscopic Deformation of Liquid Crystal Polymer Networks
,”
Angew. Chem. Int. Ed.
,
51
(
50
), pp.
12469
12472
. 10.1002/anie.201205964
11.
Aharoni
,
H.
,
Sharon
,
E.
, and
Kupferman
,
R.
,
2014
, “
Geometry of Thin Nematic Elastomer Sheets
,”
Phys. Rev. Lett.
,
113
(
25
), p.
257801
. 10.1103/PhysRevLett.113.257801
12.
Mostajeran
,
C.
,
2015
, “
Curvature Generation in Nematic Surfaces
,”
Phys. Rev. E
,
91
(
6
), p.
062405
. 10.1103/PhysRevE.91.062405
13.
Griniasty
,
I.
,
Aharoni
,
H.
, and
Efrati
,
E.
,
2019
, “
Curved Geometries From Planar Director Fields: Solving the Two-Dimensional Inverse Problem
,”
Phys. Rev. Lett.
,
123
(
12
), p.
127801
. 10.1103/PhysRevLett.123.127801
14.
Modes
,
C. D.
, and
Warner
,
M.
,
2011
, “
Blueprinting Nematic Glass: Systematically Constructing and Combining Active Points of Curvature for Emergent Morphology
,”
Phys. Rev. E
,
84
(
2
), p.
021711
. 10.1103/PhysRevE.84.021711
15.
Plucinsky
,
P.
,
Lemm
,
M.
, and
Bhattacharya
,
K.
,
2016
, “
Programming Complex Shapes in Thin Nematic Elastomer and Glass Sheets
,”
Phys. Rev. E
,
94
, p.
010701(R)
. 10.1103/PhysRevE.94.010701
16.
Plucinsky
,
P.
,
Kowalski
,
B. A.
,
White
,
T. J.
, and
Bhattacharya
,
K.
,
2017
, “
Patterning Nonisometric Origami in Nematic Elastomer Sheets
,”
Soft Matter
,
14
(
16
), pp.
3127
3134
. 10.1039/C8SM00103K
17.
Warner
,
M.
,
Modes
,
C. D.
, and
Corbett
,
D.
,
2010
, “
Curvature in Nematic Elastica Responding to Light and Heat
,”
Proc. R. Soc. A
,
466
(
2122
), pp.
2975
2989
. 10.1098/rspa.2010.0135
18.
Modes
,
C. D.
,
Warner
,
M.
,
van Oosten
,
C. L.
, and
Corbett
,
D.
,
2010
, “
Anisotropic Response of Glassy Splay-Bend and Twist Nematic Cantilevers to Light and Heat
,”
Phys. Rev. E
,
82
(
4
), p.
041111
. 10.1103/PhysRevE.82.041111
19.
He
,
L. H.
,
2013
, “
Response of Constrained Glassy Splay-Bend and Twist Nematic Sheets to Light and Heat
,”
Eur. Phys. J. E
,
36
(
8
), p.
83
. 10.1140/epje/i2013-13083-2
20.
He
,
L. H.
, and
Huang
,
D. W.
,
2014
, “
Modeling Photo-Induced Deformation of Glassy Splay-Bend and Twist Nematic Sheets
,”
Int. J. Solids Struct.
,
51
(
19–20
), pp.
3471
3479
.
21.
Landau
,
L.
, and
Lifshitz
,
E.
,
1959
,
Theory of Elasticity
,
Pergamon Press
,
New York
.
22.
Timoshenko
,
S.
, and
Woinowsky-krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
23.
Andrews
,
L. C.
,
1985
,
Special Functions of Mathematics for Engineers
,
McGraw-Hill
,
New York
.
24.
do Carmo
,
M. P.
,
1976
,
Differential Geometry of Curves and Surfaces
,
Prentice-Hall
,
New York
.
You do not currently have access to this content.