Abstract

The previously developed finite volume-based asymptotic homogenization theory (FVBAHT) for anti-plane shear loading (He, Z., and Pindera, M.-J., “Finite-Volume Based Asymptotic Homogenization Theory for Periodic Materials Under Anti-Plane Shear,” Eur. J. Mech. A Solids (in revision)) is further extended to in-plane loading of unidirectional fiber reinforced periodic structures. Like the anti-plane FVBAHT, the present extension builds upon the previously developed finite volume direct averaging micromechanics theory applicable under uniform strain fields and further accounts for strain gradients and non-vanishing microstructural scale relative to structural dimensions, albeit with multidimensional in-plane loadings incorporated. The unit cell problems at different orders of the asymptotic field expansion are solved by satisfying local equilibrium equations and displacement and traction continuity in a surface-averaged sense which is unique among the existing asymptotic homogenization schemes, leading to microfluctuation functions that yield homogenized stiffness tensors at each order for use in macroscale problems. The newly extended multiscale theory is employed in the analysis of a structural boundary-value problem under in-plane loading, illustrating pronounced boundary effects. A combination approach proposed in the literature is subsequently employed to mitigate the boundary layer effects by explicitly accounting for the microstructural details in the boundary region. This combination approach produces accurate recovery of the local fields in both regions. The extension to in-plane problem marks FVBAHT as an alternative, self-contained asymptotic homogenization tool, with documented advantages relative to current numerical techniques, for the analysis of periodic materials in the presence of strain gradients produced by three-dimensional loading regardless of microstructural scale.

References

References
1.
Vasiliev
,
V. V.
, and
Morozov
,
E. V.
,
2001
,
Mechanics and Analysis of Composite Materials
,
Elsevier
,
Amsterdam
.
2.
Charalambakis
,
N.
,
2010
, “
Homogenization Techniques and Micromechanics. A Survey and Perspectives.
ASME Appl. Mech. Rev.
,
63
(
3
), p.
030803
. 10.1115/1.4001911
3.
Bogoliubov
,
N. N.
, and
Mitropolsky
,
Y. A.
,
1961
,
Asymptotic Methods in the Theory of Non-Linear Oscillations
,
Gordon and Breach Science Publishers
,
New York
.
4.
van Dyke
,
M.
,
1964
,
Perturbation Methods in Fluid Mechanics
,
Academic Press
,
New York
.
5.
Smyshlyaev
,
V. P.
, and
Cherednichenko
,
K. D.
,
2000
, “
On Rigorous Derivation of Strain Gradient Effects in the Overall Behaviour of Periodic Heterogeneous Media
,”
J. Mech. Phys. Solids
,
48
(
6
), pp.
1325
1357
. 10.1016/S0022-5096(99)00090-3
6.
Bensoussan
,
A.
,
Lions
,
J.-L.
, and
Papanicolaou
,
G.
,
1978
,
Asymptotic Analysis for Periodic Structures
,
North Holland
,
Amsterdam
.
7.
Sanchez-Palencia
,
E.
,
1980
,
Non-Inhomogeneous, Media and Vibration Theory
(
Lecture Notes in Physics
, Vol.
127
Springer-Verlag
,
Berlin
.
8.
Bakhvalov
,
N.
, and
Panasenko
,
G.
,
1989
,
Homogenisation: Averaging Processes in Periodic Media
,
Springer
,
Netherlands
.
9.
Oleinik
,
O. A.
,
Shamaev
,
A. S.
, and
Yosifian
,
G. A.
,
1992
,
Mathematical Problems in Elasticity and Homogenization
,
North Holland
,
Amsterdam
.
10.
Allaire
,
G.
,
2002
,
Shape Optimization by the Homogenization Method
,
Springer-Verlag
,
Berlin-Heidelberg-New York
.
11.
Andrianov
,
I. V.
,
Awrejcewicz
,
J.
, and
Danishevskyy
,
V. V.
,
2018
,
Asymptotical Mechanics of Composites Modelling Composites Without FEM
,
Springer International Publishing
,
Cham
.
12.
Kalamkarov
,
A. L.
,
Andrianov
,
I. V.
, and
Danishevs’kyy
,
V. V.
,
2009
, “
Asymptotic Homogenization of Composite Materials and Structures
,”
ASME Appl. Mech. Rev.
,
62
(
3
), p.
030802
. 10.1115/1.3090830
13.
Becus
,
G. A.
,
1979
, “
Homogenization and Random Evolutions: Applications to the Mechanics of Composite Materials
,”
Q. Appl. Math.
,
37
(
3
), pp.
209
217
. 10.1090/qam/548985
14.
Boutin
,
C.
,
1996
, “
Microstructural Effects in Elastic Composites
,”
Int. J. Solids Struct.
,
33
(
7
), pp.
1023
1051
. 10.1016/0020-7683(95)00089-5
15.
Fish
,
J.
,
Chen
,
W.
, and
Nagai
,
G.
,
2002
, “
Non-Local Dispersive Model for Wave Propagation in Heterogeneous Media: One-Dimensional Case
,”
Int. J. Numer. Methods Eng.
,
54
(
3
), pp.
331
346
. 10.1002/nme.423
16.
Hui
,
T.
, and
Oskay
,
C.
,
2013
, “
A Nonlocal Homogenization Model for Wave Dispersion in Dissipative Composite Materials
,”
Int. J. Solids Struct.
,
50
(
1
), pp.
38
48
. 10.1016/j.ijsolstr.2012.09.007
17.
He
,
Z.
, and
Pindera
,
M.-J.
,
2020
, “
Locally Exact Asymptotic Homogenization of Periodic Materials Under Anti-Plane Shear Loading
,”
Eur. J. Mech. A/Solids
,
81
, p.
103972
. 10.1016/j.euromechsol.2020.103972
18.
Ghosh
,
S.
,
Lee
,
K.
, and
Moorthy
,
S.
,
1995
, “
Multiple Scale Analysis of Heterogeneous Elastic Structures Using Homogenization Theory and Voronoi Cell Finite Element Method
,”
Int. J. Solids Struct.
,
32
(
1
), pp.
27
62
. 10.1016/0020-7683(94)00097-G
19.
Fish
,
J.
,
Chen
,
W.
, and
Nagai
,
G.
,
2002
, “
Non-Local Dispersive Model for Wave Propagation in Heterogeneous Media: Multi-Dimensional Case
,”
Int. J. Numer. Methods Eng.
,
54
(
3
), pp.
347
363
. 10.1002/nme.424
20.
Fish
,
J.
, and
Kuznetsov
,
S.
,
2010
, “
Computational Continua
,”
Int. J. Numer. Methods Eng.
,
84
(
7
), pp.
774
802
. 10.1002/nme.2918
21.
Fish
,
J.
,
Yang
,
Z.
, and
Yuan
,
Z.
,
2019
, “
A Second-Order Reduced Asymptotic Homogenization Approach for Nonlinear Periodic Heterogeneous Materials
,”
Int. J. Numer. Methods Eng.
,
119
(
6
), pp.
469
489
. 10.1002/nme.6058
22.
Kouznetsova
,
V.
,
Geers
,
M. G. D.
, and
Brekelmans
,
W. A. M.
,
2002
, “
Multi-Scale Constitutive Modelling of Heterogeneous Materials With a Gradient-Enhanced Computational Homogenization Scheme
,”
Int. J. Numer. Methods Eng.
,
54
(
8
), pp.
1235
1260
. 10.1002/nme.541
23.
Peerlings
,
R. H. J.
, and
Fleck
,
N. A.
,
2004
, “
Computational Evaluation of Strain Gradient Elasticity Constants
,”
Int. J. Multiscale Comput. Eng.
,
2
(
4
), pp.
599
619
. 10.1615/IntJMultCompEng.v2.i4.60
24.
Cao
,
L.
,
2005
, “
Iterated Two-Scale Asymptotic Method and Numerical Algorithm for the Elastic Structures of Composite Materials
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
27–29
), pp.
2899
2926
. 10.1016/j.cma.2004.07.023
25.
Yang
,
Z.
,
Cui
,
J.
, and
Sun
,
Y.
,
2016
, “
Transient Heat Conduction Problem with Radiation Boundary Condition of Statistically Inhomogeneous Materials by Second-Order Two-Scale Method
,”
Int. J. Heat Mass Transf.
,
100
, pp.
362
377
. 10.1016/j.ijheatmasstransfer.2016.04.093
26.
Li
,
J.
, and
Zhang
,
X. B.
,
2013
, “
A Numerical Approach for the Establishment of Strain Gradient Constitutive Relations in Periodic Heterogeneous Materials
,”
Eur. J. Mech. A/Solids
,
41
, pp.
70
85
. 10.1016/j.euromechsol.2013.03.001
27.
Ameen
,
M. M.
,
Peerlings
,
R. H. J.
, and
Geers
,
M. G. D.
,
2018
, “
A Quantitative Assessment of the Scale Separation Limits of Classical and Higher-Order Asymptotic Homogenization
,”
Eur. J. Mech. / A Solids
,
71
, pp.
89
100
. 10.1016/j.euromechsol.2018.02.011
28.
He
,
Z.
, and
Pindera
,
M.-J.
,
2020
, “
Finite-Volume Based Asymptotic Homogenization Theory for Periodic Materials Under Anti-Plane Shear
,”
Eur. J. Mech./A Solids
,
in revision
.
29.
Cardiff
,
P.
, and
Demirdžić
,
I.
, Thirty Years of the Finite Volume Method for Solid Mechanics,” arXiv preprint, arXiv:1810.02105, 2018.
30.
Bansal
,
Y.
, and
Pindera
,
M.-J.
,
2005
, “
A Second Look At the Higher-Order Theory for Periodic Multiphase Materials
,”
ASME J. Appl. Mech.
,
72
(
2
), pp.
177
195
. 10.1115/1.1831294
31.
Gattu
,
M.
,
Khatam
,
H.
,
Drago
,
A. S.
, and
Pindera
,
M. J.
,
2008
, “
Parametric Finite-Volume Micromechanics of Uniaxial Continuously-Reinforced Periodic Materials With Elastic Phases
,”
ASME J. Eng. Mater. Technol.
,
130
(
3
), p.
031015
. 10.1115/1.2931157
32.
Khatam
,
H.
, and
Pindera
,
M.-J.
,
2009
, “
Parametric Finite-Volume Micromechanics of Periodic Materials With Elastoplastic Phases
,”
Int. J. Plast.
,
25
(
7
), pp.
1386
1411
. 10.1016/j.ijplas.2008.09.003
33.
Cavalcante
,
M. A. A.
, and
Pindera
,
M.
,
2014
, “
Generalized FVDAM Theory for Periodic Materials Undergoing Finite Deformations—Part I: Framework
,”
ASME J. Appl. Mech.
,
81
(
2
), p.
021005
. 10.1115/1.4024406
34.
Cavalcante
,
M. A. A.
,
Marques
,
S. P. C.
, and
Pindera
,
M.
,
2008
, “
Computational Aspects of the Parametric Finite-Volume Theory for Functionally Graded Materials
,”
Comput. Mater. Sci.
,
44
(
2
), pp.
422
438
. 10.1016/j.commatsci.2008.04.006
35.
Tu
,
W.
, and
Pindera
,
M.
,
2014
, “
Cohesive Zone-Based Damage Evolution in Periodic Materials Via Finite-Volume Homogenization
,”
ASME J. Appl. Mech.
,
81
(
10
), p.
101005
. 10.1115/1.4028103
36.
Gao
,
Y.
,
Xing
,
Y.
,
Huang
,
Z.
,
Li
,
M.
, and
Yang
,
Y.
,
2020
, “
An Assessment of Multiscale Asymptotic Expansion Method for Linear Static Problems of Periodic Composite Structures
,”
Eur. J. Mech. A/Solids
,
81
, p.
103951
. 10.1016/j.euromechsol.2020.103951
37.
Cavalcante
,
M. A. A.
,
Marques
,
S. P. C.
, and
Pindera
,
M. -J.
,
2007
, “
Parametric Formulation of the Finite-Volume Theory for Functionally Graded Materials—Part I: Analysis
,”
ASME J. Appl. Mech.
,
74
(
5
), pp.
935
945
. 10.1115/1.2722312
38.
Sanchez-Palencia
,
E.
,
1985
,
Homogenization, Techniques for Composites Media
(
Lecture Note in Physics
, Vol.
272
,
Springer
,
Berlin
. pp.
122
192
.
39.
Chen
,
L.
,
Urquhart
,
E. E.
, and
Pindera
,
M.-J.
,
2005
, “
Microstructural Effects in Multilayers with Large Moduli Contrast Loaded by Flat Punch
,”
AIAA J
,
43
(
5
), pp.
962
973
. 10.2514/1.11576
40.
Chen
,
L.
, and
Pindera
,
M.
,
2008
, “
Fracture Mechanics of Periodic Multilayers With Different Microstructural Scales and Moduli Contrast
,”
ASME J. Appl. Mech.
,
75
(
5
), p.
051109
. 10.1115/1.2936236
41.
Drago
,
A.
, and
Pindera
,
M.-J.
,
2007
, “
Micro-Macromechanical Analysis of Heterogeneous Materials: Macroscopically Homogeneous Vs Periodic Microstructures
,”
Compos. Sci. Technol.
,
67
(
6
), pp.
1243
1263
. 10.1016/j.compscitech.2006.02.031
You do not currently have access to this content.