Abstract

Recent advances in experimental techniques have enabled impact tests of ultrathin films. For example, microprojectile impact tests of ultrathin polymer films have revealed that their specific penetration energy is about ten times more than that of the conventional armor materials. On the other hand, metallic nanostructures have demonstrated extraordinary mechanical properties. These observations suggest that multilayer arrangements of nanoscale polymer and metal films could possess superior ballistic impact resistance. In order to test this hypothesis, we simulated the impact tests of multilayer aluminum-polyurea nanostructures using molecular dynamics (MD). Our simulations demonstrate that the ballistic limit velocity (V50) and the specific penetration energy of the multilayers and aluminum nanofilms are significantly higher than the experimentally measured values for any material. In order to further investigate the mechanisms associated with the observed superior ballistic performance of multilayers, we computed their V50 using an existing membrane model and another analytical model reflecting a two-stage penetration process. Our results demonstrate a potential bottom-up design pathway for developing flexible barrier materials with superior dynamic penetration resistance.

References

References
1.
Crouch
,
I. G.
,
2019
, “
Body Armour—New Materials, New Systems
,”
Def. Technol.
,
15
(
3
), pp.
241
253
. 10.1016/j.dt.2019.02.002
2.
Grossman
,
E.
,
Gouzman
,
I.
, and
Verker
,
R.
,
2010
, “
Debris/Micrometeoroid Impacts and Synergistic Effects on Spacecraft Materials
,”
MRS Bull.
,
35
(
1
), pp.
41
47
. 10.1557/mrs2010.615
3.
Avila
,
P. R. T.
,
da Silva
,
E. P.
,
Rodrigues
,
A. M.
,
Aristizabal
,
K.
,
Pineda
,
F.
,
Coelho
,
R. S.
,
Garcia
,
J. L.
,
Soldera
,
F.
,
Walczak
,
M.
, and
Pinto
,
H. C.
,
2019
, “
On Manufacturing Multilayer-Like Nanostructures Using Misorientation Gradients in PVD Films
,”
Sci. Rep.
,
9
(
1
), p.
15898
. 10.1038/s41598-019-52226-1
4.
Wen
,
M.
,
Tian
,
H. W.
,
Hu
,
C. Q.
,
Zeng
,
Y.
,
Meng
,
Q. N.
,
Zhang
,
K.
,
Zheng
,
W. T.
,
An
,
T.
, and
Zou
,
G. T.
,
2011
, “
Modulation Periodicity Dependent Structure, Stress, and Hardness in NbN/W2 N Nanostructured Multilayer Films
,”
J. Appl. Phys.
,
109
(
12
), p.
123525
. 10.1063/1.3598083
5.
Signetti
,
S.
,
Bosia
,
F.
,
Ryu
,
S.
, and
Pugno
,
N. M.
,
2020
, “
A Combined Experimental/Numerical Study on the Scaling of Impact Strength and Toughness in Composite Laminates for Ballistic Applications
,”
Compos. Part B Eng.
,
195
, p.
108090
. 10.1016/j.compositesb.2020.108090
6.
Lee
,
J.-H.
,
Veysset
,
D.
,
Singer
,
J. P.
,
Retsch
,
M.
,
Saini
,
G.
,
Pezeril
,
T.
,
Nelson
,
K. A.
, and
Thomas
,
E. L.
,
2012
, “
High Strain Rate Deformation of Layered Nanocomposites
,”
Nat. Commun.
,
3
(
1
), p.
1164
. 10.1038/ncomms2166
7.
Lee
,
J.-H.
,
Loya
,
P. E.
,
Lou
,
J.
, and
Thomas
,
E. L.
,
2014
, “
Dynamic Mechanical Behavior of Multilayer Graphene via Supersonic Projectile Penetration
,”
Science.
,
346
(
6213
), pp.
1092
1096
. 10.1126/science.1258544
8.
Hassani-Gangaraj
,
M.
,
Veysset
,
D.
,
Nelson
,
K. A.
, and
Schuh
,
C. A.
,
2018
, “
In-Situ Observations of Single Micro-Particle Impact Bonding
,”
Scr. Mater.
,
145
, pp.
9
13
. 10.1016/j.scriptamat.2017.09.042
9.
Hassani
,
M.
,
Veysset
,
D.
,
Nelson
,
K. A.
, and
Schuh
,
C. A.
,
2020
, “
Material Hardness at Strain Rates Beyond 106 s−1 via High Velocity Microparticle Impact Indentation
,”
Scr. Mater.
,
177
, pp.
198
202
. 10.1016/j.scriptamat.2019.10.032
10.
Wang
,
X.
, and
Hassani
,
M.
,
2020
, “
Ultra-High Strain Rate Constitutive Modeling of Pure Titanium Using Particle Impact Test
,”
ASME J. Appl. Mech.
,
87
(
9
), p.
091007
. 10.1115/1.4047290
11.
Cai
,
J.
, and
Thevamaran
,
R.
,
2020
, “
Superior Energy Dissipation by Ultrathin Semicrystalline Polymer Films Under Supersonic Microprojectile Impacts
,”
Nano Lett.
,
20
(
8
), pp.
5632
5638
. 10.1021/acs.nanolett.0c00066
12.
Gall
,
K.
,
Diao
,
J.
, and
Dunn
,
M. L.
,
2004
, “
The Strength of Gold Nanowires
,”
Nano Lett.
,
4
(
12
), pp.
2431
2436
. 10.1021/nl048456s
13.
McDowell
,
M. T.
,
Leach
,
A. M.
, and
Gall
,
K.
,
2008
, “
On the Elastic Modulus of Metallic Nanowires
,”
Nano Lett.
,
8
(
11
), pp.
3613
3618
. 10.1021/nl801526c
14.
Lu
,
Y.
,
Song
,
J.
,
Huang
,
J. Y.
, and
Lou
,
J.
,
2011
, “
Surface Dislocation Nucleation Mediated Deformation and Ultrahigh Strength in Sub-10-nm Gold Nanowires
,”
Nano Res.
,
4
(
12
), pp.
1261
1267
. 10.1007/s12274-011-0177-y
15.
Richardson
,
J. J.
,
Bjornmalm
,
M.
, and
Caruso
,
F.
,
2015
, “
Technology-Driven Layer-by-Layer Assembly of Nanofilms
,”
Science
,
348
(
6233
), p.
aaa2491
. 10.1126/science.aaa2491
16.
Grubbs
,
R. B.
,
2005
, “
Hybrid Metal-Polymer Composites From Functional Block Copolymers
,”
J. Polym. Sci. Part Polym. Chem.
,
43
(
19
), pp.
4323
4336
. 10.1002/pola.20946
17.
Meng
,
Z.
, and
Keten
,
S.
,
2018
, “
Unraveling the Effect of Material Properties and Geometrical Factors on Ballistic Penetration Energy of Nanoscale Thin Films
,”
ASME J. Appl. Mech.
,
85
(
12
), p.
121004
. 10.1115/1.4041041
18.
Meng
,
Z.
,
Han
,
J.
,
Qin
,
X.
,
Zhang
,
Y.
,
Balogun
,
O.
, and
Keten
,
S.
,
2018
, “
Spalling-like Failure by Cylindrical Projectiles Deteriorates the Ballistic Performance of Multi-Layer Graphene Plates
,”
Carbon
,
126
, pp.
611
619
. 10.1016/j.carbon.2017.10.068
19.
Meng
,
Z.
,
Singh
,
A.
,
Qin
,
X.
, and
Keten
,
S.
,
2017
, “
Reduced Ballistic Limit Velocity of Graphene Membranes due to Cone Wave Reflection
,”
Extreme Mech. Lett.
,
15
, pp.
70
77
. 10.1016/j.eml.2017.06.001
20.
Lu
,
Y. Y.
,
Kotoka
,
R.
,
Ligda
,
J. P.
,
Cao
,
B. B.
,
Yarmolenko
,
S. N.
,
Schuster
,
B. E.
, and
Wei
,
Q.
,
2014
, “
The Microstructure and Mechanical Behavior of Mg/Ti Multilayers as a Function of Individual Layer Thickness
,”
Acta Mater.
,
63
, pp.
216
231
. 10.1016/j.actamat.2013.10.032
21.
Wang
,
J.
, and
Misra
,
A.
,
2011
, “
An Overview of Interface-Dominated Deformation Mechanisms in Metallic Multilayers
,”
Curr. Opin. Solid State Mater. Sci.
,
15
(
1
), pp.
20
28
. 10.1016/j.cossms.2010.09.002
22.
Buehler
,
M. J.
, and
Misra
,
A.
,
2019
, “
Mechanical Behavior of Nanocomposites
,”
MRS Bull.
,
44
(
1
), pp.
19
24
. 10.1557/mrs.2018.323
23.
Salehinia
,
I.
,
Wang
,
J.
,
Bahr
,
D. F.
, and
Zbib
,
H. M.
,
2014
, “
Molecular Dynamics Simulations of Plastic Deformation in Nb/NbC Multilayers
,”
Int. J. Plast.
,
59
, pp.
119
132
. 10.1016/j.ijplas.2014.03.010
24.
Abdolrahim
,
N.
,
Zbib
,
H. M.
, and
Bahr
,
D. F.
,
2014
, “
Multiscale Modeling and Simulation of Deformation in Nanoscale Metallic Multilayer Systems
,”
Int. J. Plast.
,
52
, pp.
33
50
. 10.1016/j.ijplas.2013.04.002
25.
Cui
,
Y.
,
Li
,
N.
, and
Misra
,
A.
,
2019
, “
An Overview of Interface-Dominated Deformation Mechanisms in Metallic Nanocomposites Elucidated Using In Situ Straining in a TEM
,”
J. Mater. Res.
,
34
(
9
), pp.
1469
1478
. 10.1557/jmr.2019.66
26.
Sáenz-Trevizo
,
A.
, and
Hodge
,
A. M.
,
2020
, “
Nanomaterials by Design: A Review of Nanoscale Metallic Multilayers
,”
Nanotechnology
,
31
(
29
), p.
292002
. 10.1088/1361-6528/ab803f
27.
Zhang
,
R. F.
,
Germann
,
T. C.
,
Wang
,
J.
,
Liu
,
X.-Y.
, and
Beyerlein
,
I. J.
,
2013
, “
Role of Interface Structure on the Plastic Response of Cu/Nb Nanolaminates Under Shock Compression: Non-Equilibrium Molecular Dynamics Simulations
,”
Scr. Mater.
,
68
2
, pp.
114
117
. 10.1016/j.scriptamat.2012.09.022
28.
Holian
,
B. L.
,
1998
, “
Plasticity Induced by Shock Waves in Nonequilibrium Molecular-Dynamics Simulations
,”
Science
,
280
(
5372
), pp.
2085
2088
. 10.1126/science.280.5372.2085
29.
Dewapriya
,
M. A. N.
, and
Meguid
,
S. A.
,
2019
, “
Comprehensive Molecular Dynamics Studies of the Ballistic Resistance of Multilayer Graphene-Polymer Composite
,”
Comput. Mater. Sci.
,
170
, p.
109171
. 10.1016/j.commatsci.2019.109171
30.
Wetzel
,
E. D.
,
Balu
,
R.
, and
Beaudet
,
T. D.
,
2015
, “
A Theoretical Consideration of the Ballistic Response of Continuous Graphene Membranes
,”
J. Mech. Phys. Solids.
,
82
, pp.
23
31
. 10.1016/j.jmps.2015.05.008
31.
Cunniff
,
P.
,
1999
, “
Dimensionless Parameters for Optimization of Textile Based Body Armor Systems
,”
Proceedings of the 18th International Symposium on Ballistics
,
San Antonio, TX
,
Nov. 15–19
.
32.
Leigh Phoenix
,
S.
, and
Porwal
,
P. K.
,
2003
, “
A New Membrane Model for the Ballistic Impact Response and V50 Performance of Multi-ply Fibrous Systems
,”
Int. J. Solids Struct.
,
40
(
24
), pp.
6723
6765
. 10.1016/S0020-7683(03)00329-9
33.
Nguyen
,
L. H.
,
Ryan
,
S.
,
Cimpoeru
,
S. J.
,
Mouritz
,
A. P.
, and
Orifici
,
A. C.
,
2015
, “
The Effect of Target Thickness on the Ballistic Performance of Ultra High Molecular Weight Polyethylene Composite
,”
Int. J. Impact Eng.
,
75
, pp.
174
183
. 10.1016/j.ijimpeng.2014.07.008
34.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
. 10.1006/jcph.1995.1039
35.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO–The Open Visualization Tool
,”
Model. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
. 10.1088/0965-0393/18/1/015012
36.
Ercolessi
,
F.
, and
Adams
,
J. B.
,
1994
, “
Interatomic Potentials From First-Principles Calculations: The Force-Matching Method
,”
Europhys. Lett. EPL
,
26
(
8
), pp.
583
588
. 10.1209/0295-5075/26/8/005
37.
Sun
,
H.
,
Mumby
,
S. J.
,
Maple
,
J. R.
, and
Hagler
,
A. T.
,
1994
, “
An Ab Initio CFF93 All-Atom Force Field for Polycarbonates
,”
J. Am. Chem. Soc.
,
116
(
7
), pp.
2978
2987
. 10.1021/ja00086a030
38.
Daw
,
M. S.
, and
Baskes
,
M. I.
,
1984
, “
Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals
,”
Phys. Rev. B.
,
29
(
12
), pp.
6443
6453
. 10.1103/PhysRevB.29.6443
39.
Heinz
,
H.
,
Lin
,
T.-J.
,
Kishore Mishra
,
R.
, and
Emami
,
F. S.
,
2013
, “
Thermodynamically Consistent Force Fields for the Assembly of Inorganic, Organic, and Biological Nanostructures: The INTERFACE Force Field
,”
Langmuir
,
29
(
6
), pp.
1754
1765
. 10.1021/la3038846
40.
Dewapriya
,
M. A. N.
, and
Miller
,
R. E.
,
2020
, Superior Energy Absorption of Multilayer Polymer-Metal Nanostructures Under Supersonic Projectile Impact.
41.
Dewapriya
,
M. A. N.
,
2020
, Molecular Dynamics Simulations of a Polymer-Metal Interface. https://github.com/nuwan-d/polymer_metal_interface, Accessed 21 August 2020.
42.
In ‘t Veld
,
P.J.
,
2019
, Enhanced Monte Carlo, http://montecarlo.sourceforge.net/emc, Accessed 1 August 2020.
43.
MIL-STD-662F
,
1997
,
V50 Ballistic Test for Armor
,
The United States Department of Defense
.
44.
Dewapriya
,
M. A. N.
, and
Miller
,
R. E.
,
2020
, “
Molecular Dynamics Study of the Mechanical Behavior of Ultrathin Polymer Metal Multilayers Under Extreme Dynamic Conditions
,”
Comput. Mater. Sci.
,
184
, p.
109951
. 10.1016/j.commatsci.2020.109951
45.
Amini
,
M. R.
,
Isaacs
,
J.
, and
Nemat-Nasser
,
S.
,
2010
, “
Investigation of Effect of Polyurea on Response of Steel Plates to Impulsive Loads in Direct Pressure-Pulse Experiments
,”
Mech. Mater.
,
42
(
6
), pp.
628
639
. 10.1016/j.mechmat.2009.09.008
46.
Amini
,
M. R.
,
Isaacs
,
J. B.
, and
Nemat-Nasser
,
S.
,
2010
, “
Experimental Investigation of Response of Monolithic and Bilayer Plates to Impulsive Loads
,”
Int. J. Impact Eng.
,
37
(
1
), pp.
82
89
. 10.1016/j.ijimpeng.2009.04.002
47.
Xue
,
L.
,
Mock
,
W.
, and
Belytschko
,
T.
,
2010
, “
Penetration of DH-36 Steel Plates With and Without Polyurea Coating
,”
Mech. Mater.
,
42
(
11
), pp.
981
1003
. 10.1016/j.mechmat.2010.08.004
48.
Mohotti
,
D.
,
Ngo
,
T.
,
Mendis
,
P.
, and
Raman
,
S. N.
,
2013
, “
Polyurea Coated Composite Aluminium Plates Subjected to High Velocity Projectile Impact
,”
Mater. Des. (1980-2015)
,
52
, pp.
1
16
. 10.1016/j.matdes.2013.05.060
49.
Jiang
,
Y.
,
Zhang
,
B.
,
Wei
,
J.
, and
Wang
,
W.
,
2019
, “
Study on the Impact Resistance of Polyurea-Steel Composite Plates to Low Velocity Impact
,”
Int. J. Impact Eng.
,
133
, p.
103357
. 10.1016/j.ijimpeng.2019.103357
50.
Miller
,
R. E.
, and
Shenoy
,
V. B.
,
2000
, “
Size-dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
,
11
(
3
), p.
139
147
. 10.1088/0957-4484/11/3/301
51.
Greenhalgh
,
E. S.
,
Bloodworth
,
V. M.
,
Iannucci
,
L.
, and
Pope
,
D.
,
2013
, “
Fractographic Observations on Dyneema® Composites Under Ballistic Impact
,”
Compos. Part Appl. Sci. Manuf.
,
44
, pp.
51
62
. 10.1016/j.compositesa.2012.08.012
52.
Morye
,
S. S.
,
Hine
,
P. J.
,
Duckett
,
R. A.
,
Carr
,
D. J.
, and
Ward
,
I. M.
,
2000
, “
Modelling of the Energy Absorption by Polymer Composites Upon Ballistic Impact
,”
Compos. Sci. Technol.
,
60
(
14
), pp.
2631
2642
. 10.1016/S0266-3538(00)00139-1
53.
Chocron
,
S.
,
Kirchdoerfer
,
T.
,
King
,
N.
, and
Freitas
,
C. J.
,
2011
, “
Modeling of Fabric Impact With High Speed Imaging and Nickel-Chromium Wires Validation
,”
ASME J. Appl. Mech.
,
78
(
5
), p.
051007
. 10.1115/1.4004280
54.
Amirkhizi
,
A. V.
,
Isaacs
,
J.
,
McGee
,
J.
, and
Nemat-Nasser
,
S.
,
2006
, “
An Experimentally-Based Viscoelastic Constitutive Model for Polyurea, Including Pressure and Temperature Effects
,”
Philos. Mag.
,
86
(
36
), pp.
5847
5866
. 10.1080/14786430600833198
55.
van Duin
,
A. C. T.
,
Dasgupta
,
S.
,
Lorant
,
F.
, and
Goddard
,
W. A.
,
2001
, “
ReaxFF: A Reactive Force Field for Hydrocarbons
,”
J. Phys. Chem. A.
,
105
(
41
), pp.
9396
9409
. 10.1021/jp004368u
56.
Chenoweth
,
K.
,
van Duin
,
A. C. T.
, and
Goddard
,
W. A.
,
2008
, “
ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation
,”
J. Phys. Chem. A
,
112
(
5
), pp.
1040
1053
. 10.1021/jp709896w
57.
Russell
,
B. P.
,
Karthikeyan
,
K.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2013
, “
The High Strain Rate Response of Ultra High Molecular-Weight Polyethylene: From Fibre to Laminate
,”
Int. J. Impact Eng.
,
60
, pp.
1
9
. 10.1016/j.ijimpeng.2013.03.010
58.
Koziol
,
K.
,
Vilatela
,
J.
,
Moisala
,
A.
,
Motta
,
M.
,
Cunniff
,
P.
,
Sennett
,
M.
, and
Windle
,
A.
,
2007
, “
High-Performance Carbon Nanotube Fiber
,”
Science
,
318
(
5858
), pp.
1892
1895
. 10.1126/science.1147635
59.
Hyon
,
J.
,
Lawal
,
O.
,
Fried
,
O.
,
Thevamaran
,
R.
,
Yazdi
,
S.
,
Zhou
,
M.
,
Veysset
,
D.
,
Kooi
,
S. E.
,
Jiao
,
Y.
,
Hsiao
,
M.-S.
,
Streit
,
J.
,
Vaia
,
R. A.
, and
Thomas
,
E. L.
,
2018
, “
Extreme Energy Absorption in Glassy Polymer Thin Films by Supersonic Micro-Projectile Impact
,”
Mater. Today
,
21
(
8
), pp.
817
824
. 10.1016/j.mattod.2018.07.014
60.
Chan
,
E. P.
,
Xie
,
W.
,
Orski
,
S. V.
,
Lee
,
J.-H.
, and
Soles
,
C. L.
,
2019
, “
Entanglement Density-Dependent Energy Absorption of Polycarbonate Films via Supersonic Fracture
,”
ACS Macro Lett.
,
8
(
7
), pp.
806
811
. 10.1021/acsmacrolett.9b00264
61.
Xie
,
W.
,
Tadepalli
,
S.
,
Park
,
S. H.
,
Kazemi-Moridani
,
A.
,
Jiang
,
Q.
,
Singamaneni
,
S.
, and
Lee
,
J.-H.
,
2018
, “
Extreme Mechanical Behavior of Nacre-Mimetic Graphene-Oxide and Silk Nanocomposites
,”
Nano Lett.
,
18
(
2
), pp.
987
993
. 10.1021/acs.nanolett.7b04421
62.
Fernández-d´Arlas
,
B.
,
Rueda
,
L.
,
Fernández
,
R.
,
Khan
,
U.
,
Coleman
,
J. N.
,
Mondragon
,
I.
, and
Eceiza
,
A.
,
2010
, “
Inverting Polyurethanes Synthesis: Effects on Nano/Micro-Structure and Mechanical Properties
,”
Soft Mater.
,
9
(
1
), pp.
79
93
. 10.1080/1539445X.2010.525173
63.
Lempesis
,
N.
,
in ‘t Veld
,
P. J.
, and
Rutledge
,
G. C.
,
2017
,
Atomistic Simulation of a Thermoplastic Polyurethane and Micromechanical Modeling
,”
Macromolecules
,
50
(
18
), pp.
7399
7409
. 10.1021/acs.macromol.7b01296
64.
Cannon
,
L.
,
2001
, “
Behind Armour Blunt Trauma—An Emerging Problem
,”
J. R. Army Med. Corps.
,
147
(
1
), pp.
87
96
. 10.1136/jramc-147-01-09
You do not currently have access to this content.