Abstract

A buckled beam with shallow rise under lateral constraint is considered. The initial rise results from a prescribed end displacement. The beam is modeled as inextensible, and analytical solutions of the equilibria are obtained from a constrained energy minimization problem. For simplicity, the results are derived for the archetypal beam with pinned ends. It is found that there are an infinite number of zero lateral-load equilibria, each corresponding to an Euler buckling mode. A numerical model is used to verify the accuracy of the model and also to explore the effects of extensibility.

References

References
1.
Fung
,
Y. C.
, and
Kaplan
,
A.
, “
Buckling of Low Arches or Curved Beams of Small Curvature
,”
Technical Note number 2840
,
National Advisory Committee for Aeronautics
,
1952
.
2.
Hoff
,
N. J.
, and
Bruce
,
V. G.
,
1953
, “
Dynamic Analysis of the Buckling of Laterally Loaded Flat Arches
,”
J. Math. Phys.
,
32
(
1–4
), pp.
276
288
. 10.1002/sapm1953321276
3.
Lock
,
M. H.
,
1966
, “
Snapping of a Shallow Sinusoidal Arch Under a Step Pressure Load
,”
AIAA J.
,
4
(
7
), pp.
1249
1256
. 10.2514/3.3656
4.
Walker
,
A. C.
,
1969
, “
A Non-linear Finite Element Analysis of Shallow Circular Arches
,”
Int. J. Solids. Struct.
,
5
(
2
), pp.
97
107
. 10.1016/0020-7683(69)90023-7
5.
Plaut
,
R. H.
,
1979
, “
Influence of Load Position on the Stability of Shallow Arches
,”
J. Appl. Math. Phys. (ZAMP)
,
30
, pp.
548
552
. 10.1007/BF01588902
6.
Thompson
,
J. M. T.
, and
Hunt
,
G. W.
,
1983
, “
On the Buckling and Imperfection-Sensitivity of Arches With and Without Prestress
,”
Int. J. Solids. Struct.
,
19
(
5
), pp.
445
459
. 10.1016/0020-7683(83)90055-0
7.
Chen
,
J.-S.
,
Ro
,
W.-C.
, and
Lin
,
J.-S.
,
2009
, “
Exact Static and Dynamic Critical Loads of a Sinusoidal Arch Under a Point Force at the Midpoint
,”
Int. J. Non-Linear Mech.
,
44
(
1
), pp.
66
70
. 10.1016/j.ijnonlinmec.2008.08.006
8.
Virgin
,
L. N.
,
Wiebe
,
R.
,
Spottswood
,
S. M.
, and
Eason
,
T. G.
,
2014
, “
Sensitivity in the Structural Behavior of Shallow Arches
,”
Int. J. Non-Linear Mech.
,
58
, pp.
212
221
. 10.1016/j.ijnonlinmec.2013.10.003
9.
Plaut
,
R. H.
,
2015
, “
Snap-through of Arches and Buckled Beams Under Unilateral Displacement Control
,”
Int. J. Solids. Struct.
,
63
, pp.
109
113
. 10.1016/j.ijsolstr.2015.02.044
10.
Zhou
,
Y.
,
Chang
,
W.
, and
Stanciulescu
,
I.
,
2015
, “
Non-Linear Stability and Remote Unconnected Equilibria of Shallow Arches with Asymmetric Geometric Imperfections
,”
Int. J. Non-Linear Mech.
,
77
, pp.
1
11
. 10.1016/j.ijnonlinmec.2015.06.015
11.
Plaut
,
R. H.
, and
Virgin
,
L. N.
,
2017
, “
Snap-Through Under Unilateral Displacement Control With Constant Velocity
,”
Int. J. Non-Linear Mech.
,
94
, pp.
292
299
. 10.1016/j.ijnonlinmec.2017.01.015
12.
Sano
,
T. G.
, and
Wada
,
H.
,
2018
, “
Snap-Buckling in Asymmetrically Constrained Elastic Strips
,”
Phys. Rev. E
,
97
(
1
), p.
013002
. 10.1103/PhysRevE.97.013002
13.
Gao
,
R.
,
Li
,
M.
,
Wang
,
Q.
,
Zhao
,
J.
, and
Liu
,
S.
,
2018
, “
A Novel Design Method of Bistable Structures With Required Snap-Through Properties
,”
Sens. Actuators., A.
,
272
, pp.
295
300
. 10.1016/j.sna.2017.12.019
14.
Yan
,
S.-T.
,
Shen
,
X.
,
Chen
,
Z.
, and
Jin
,
Z.
,
2018
, “
Collapse Behavior of Non-uniform Shallow Arch Under a Concentrated Load for Fixed and Pinned Boundary Conditions
,”
Int. J. Mech. Sci.
,
137
, pp.
46
67
. 10.1016/j.ijmecsci.2018.01.005
15.
Zhao
,
J.
,
Zhang
,
J.
,
Wang
,
K. W.
,
Cheng
,
K.
,
Wang
,
H.
,
Huang
,
Y.
, and
Liu
,
P.
,
2020
, “
On the Nonlinear Snap-Through of Arch-Shaped Clamped-Clamped Bistable Beams
,”
ASME J. Appl. Mech.
,
87
(
2
), p.
024502
. 10.1115/1.4045593
16.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
. 10.1088/0964-1726/22/2/023001
17.
Hu
,
N.
, and
Burgueño
,
R.
,
2015
, “
Buckling-Induced Smart Applications: Recent Advances and Trends
,”
Smart Mater. Struct.
,
24
(
6
), p.
063001
. 10.1088/0964-1726/24/6/063001
18.
Zhang
,
Z.
,
Li
,
Y.
,
Yu
,
X.
,
Li
,
X.
,
Wu
,
H.
,
Wu
,
H.
,
Jiang
,
S.
, and
Chai
,
G.
,
2019
, “
Bistable Morphing Composite Structures: A Review
,”
Thin-Walled Struct.
,
142
, pp.
74
97
. 10.1016/j.tws.2019.04.040
19.
Nistor
,
M.
,
Wiebe
,
R.
, and
Stanciulescu
,
I.
,
2017
, “
Relationship Between Euler Buckling and Unstable Equilibria of Buckled Beams
,”
Int. J. Non-Linear Mech.
,
95
, pp.
151
161
. 10.1016/j.ijnonlinmec.2017.06.016
20.
Plaut
,
R. H.
,
2015
, “
Snap-Through of Shallow Extensible Arches Under Unilateral Displacement Control
,”
ASME J. Appl. Mech.
,
82
(
9
), p.
094503
. 10.1115/1.4030741
21.
Harvey, Jr.
,
P. S.
, and
Virgin
,
L. N.
,
2015
, “
Coexisting Equilibria and Stability of a Shallow Arch: Unilateral Displacement-Control Experiments and Theory
,”
Int. J. Solids. Struct.
,
54
, pp.
1
11
. 10.1016/j.ijsolstr.2014.11.016
22.
van Iderstein
,
T.
, and
Wiebe
,
R.
,
2019
, “Experimental Path Following of Unstable Static Equilibria for Snap-Through Buckling,”
Nonlinear Dynamics
, Vol.
1
,
Kerschen
,
G.
, ed.,
Springer International Publishing
,
Cham
, pp.
17
22
.
23.
Neville
,
R. M.
,
Groh
,
R. M. J.
,
Pirrera
,
A.
, and
Schenk
,
M.
,
2020
, “
Beyond the Fold: Experimentally Traversing Limit Points in Nonlinear Structures
,”
Proce. R. Soc. A: Math., Phys. Eng. Sci.
,
476
(
2233
), p.
20190576
. 10.1098/rspa.2019.0576
24.
Masashi
,
I.
,
1994
, “
Effects of Coordinate System on the Accuracy of Corotational Formulation for Bernoulli-Euler’s Beam
,”
Int. J. Solids. Struct.
,
31
(
20
), pp.
2793
2806
. 10.1016/0020-7683(94)90069-8
25.
Battini
,
J.-M.
,
2002
, “
Co-Rotational Beam Elements in Instability Problems
,” Ph.D. Thesis,
KTH Royal Institute of Technology
,
Stockholm
.
26.
Zhou
,
Y.
,
Yi
,
Z.
, and
Stanciulescu
,
I.
,
2019
, “
Nonlinear Buckling and Postbuckling of Shallow Arches With Vertical Elastic Supports
,”
ASME J. Appl. Mech.
,
86
(
6
), p.
061001
. 10.1115/1.4042572
You do not currently have access to this content.