Abstract
A buckled beam with shallow rise under lateral constraint is considered. The initial rise results from a prescribed end displacement. The beam is modeled as inextensible, and analytical solutions of the equilibria are obtained from a constrained energy minimization problem. For simplicity, the results are derived for the archetypal beam with pinned ends. It is found that there are an infinite number of zero lateral-load equilibria, each corresponding to an Euler buckling mode. A numerical model is used to verify the accuracy of the model and also to explore the effects of extensibility.
Issue Section:
Research Papers
References
References
1.
Fung
, Y. C.
, and Kaplan
, A.
, “Buckling of Low Arches or Curved Beams of Small Curvature
,” Technical Note number 2840
, National Advisory Committee for Aeronautics
, 1952
.2.
Hoff
, N. J.
, and Bruce
, V. G.
, 1953
, “Dynamic Analysis of the Buckling of Laterally Loaded Flat Arches
,” J. Math. Phys.
, 32
(1–4
), pp. 276
–288
. 10.1002/sapm19533212763.
Lock
, M. H.
, 1966
, “Snapping of a Shallow Sinusoidal Arch Under a Step Pressure Load
,” AIAA J.
, 4
(7
), pp. 1249
–1256
. 10.2514/3.36564.
Walker
, A. C.
, 1969
, “A Non-linear Finite Element Analysis of Shallow Circular Arches
,” Int. J. Solids. Struct.
, 5
(2
), pp. 97
–107
. 10.1016/0020-7683(69)90023-75.
Plaut
, R. H.
, 1979
, “Influence of Load Position on the Stability of Shallow Arches
,” J. Appl. Math. Phys. (ZAMP)
, 30
, pp. 548
–552
. 10.1007/BF015889026.
Thompson
, J. M. T.
, and Hunt
, G. W.
, 1983
, “On the Buckling and Imperfection-Sensitivity of Arches With and Without Prestress
,” Int. J. Solids. Struct.
, 19
(5
), pp. 445
–459
. 10.1016/0020-7683(83)90055-07.
Chen
, J.-S.
, Ro
, W.-C.
, and Lin
, J.-S.
, 2009
, “Exact Static and Dynamic Critical Loads of a Sinusoidal Arch Under a Point Force at the Midpoint
,” Int. J. Non-Linear Mech.
, 44
(1
), pp. 66
–70
. 10.1016/j.ijnonlinmec.2008.08.0068.
Virgin
, L. N.
, Wiebe
, R.
, Spottswood
, S. M.
, and Eason
, T. G.
, 2014
, “Sensitivity in the Structural Behavior of Shallow Arches
,” Int. J. Non-Linear Mech.
, 58
, pp. 212
–221
. 10.1016/j.ijnonlinmec.2013.10.0039.
Plaut
, R. H.
, 2015
, “Snap-through of Arches and Buckled Beams Under Unilateral Displacement Control
,” Int. J. Solids. Struct.
, 63
, pp. 109
–113
. 10.1016/j.ijsolstr.2015.02.04410.
Zhou
, Y.
, Chang
, W.
, and Stanciulescu
, I.
, 2015
, “Non-Linear Stability and Remote Unconnected Equilibria of Shallow Arches with Asymmetric Geometric Imperfections
,” Int. J. Non-Linear Mech.
, 77
, pp. 1
–11
. 10.1016/j.ijnonlinmec.2015.06.01511.
Plaut
, R. H.
, and Virgin
, L. N.
, 2017
, “Snap-Through Under Unilateral Displacement Control With Constant Velocity
,” Int. J. Non-Linear Mech.
, 94
, pp. 292
–299
. 10.1016/j.ijnonlinmec.2017.01.01512.
Sano
, T. G.
, and Wada
, H.
, 2018
, “Snap-Buckling in Asymmetrically Constrained Elastic Strips
,” Phys. Rev. E
, 97
(1
), p. 013002
. 10.1103/PhysRevE.97.01300213.
Gao
, R.
, Li
, M.
, Wang
, Q.
, Zhao
, J.
, and Liu
, S.
, 2018
, “A Novel Design Method of Bistable Structures With Required Snap-Through Properties
,” Sens. Actuators., A.
, 272
, pp. 295
–300
. 10.1016/j.sna.2017.12.01914.
Yan
, S.-T.
, Shen
, X.
, Chen
, Z.
, and Jin
, Z.
, 2018
, “Collapse Behavior of Non-uniform Shallow Arch Under a Concentrated Load for Fixed and Pinned Boundary Conditions
,” Int. J. Mech. Sci.
, 137
, pp. 46
–67
. 10.1016/j.ijmecsci.2018.01.00515.
Zhao
, J.
, Zhang
, J.
, Wang
, K. W.
, Cheng
, K.
, Wang
, H.
, Huang
, Y.
, and Liu
, P.
, 2020
, “On the Nonlinear Snap-Through of Arch-Shaped Clamped-Clamped Bistable Beams
,” ASME J. Appl. Mech.
, 87
(2
), p. 024502
. 10.1115/1.404559316.
Harne
, R. L.
, and Wang
, K. W.
, 2013
, “A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,” Smart Mater. Struct.
, 22
(2
), p. 023001
. 10.1088/0964-1726/22/2/02300117.
Hu
, N.
, and Burgueño
, R.
, 2015
, “Buckling-Induced Smart Applications: Recent Advances and Trends
,” Smart Mater. Struct.
, 24
(6
), p. 063001
. 10.1088/0964-1726/24/6/06300118.
Zhang
, Z.
, Li
, Y.
, Yu
, X.
, Li
, X.
, Wu
, H.
, Wu
, H.
, Jiang
, S.
, and Chai
, G.
, 2019
, “Bistable Morphing Composite Structures: A Review
,” Thin-Walled Struct.
, 142
, pp. 74
–97
. 10.1016/j.tws.2019.04.04019.
Nistor
, M.
, Wiebe
, R.
, and Stanciulescu
, I.
, 2017
, “Relationship Between Euler Buckling and Unstable Equilibria of Buckled Beams
,” Int. J. Non-Linear Mech.
, 95
, pp. 151
–161
. 10.1016/j.ijnonlinmec.2017.06.01620.
Plaut
, R. H.
, 2015
, “Snap-Through of Shallow Extensible Arches Under Unilateral Displacement Control
,” ASME J. Appl. Mech.
, 82
(9
), p. 094503
. 10.1115/1.403074121.
Harvey, Jr.
, P. S.
, and Virgin
, L. N.
, 2015
, “Coexisting Equilibria and Stability of a Shallow Arch: Unilateral Displacement-Control Experiments and Theory
,” Int. J. Solids. Struct.
, 54
, pp. 1
–11
. 10.1016/j.ijsolstr.2014.11.01622.
van Iderstein
, T.
, and Wiebe
, R.
, 2019
, “Experimental Path Following of Unstable Static Equilibria for Snap-Through Buckling,” Nonlinear Dynamics
, Vol. 1
, Kerschen
, G.
, ed., Springer International Publishing
, Cham
, pp. 17
–22
.23.
Neville
, R. M.
, Groh
, R. M. J.
, Pirrera
, A.
, and Schenk
, M.
, 2020
, “Beyond the Fold: Experimentally Traversing Limit Points in Nonlinear Structures
,” Proce. R. Soc. A: Math., Phys. Eng. Sci.
, 476
(2233
), p. 20190576
. 10.1098/rspa.2019.057624.
Masashi
, I.
, 1994
, “Effects of Coordinate System on the Accuracy of Corotational Formulation for Bernoulli-Euler’s Beam
,” Int. J. Solids. Struct.
, 31
(20
), pp. 2793
–2806
. 10.1016/0020-7683(94)90069-825.
Battini
, J.-M.
, 2002
, “Co-Rotational Beam Elements in Instability Problems
,” Ph.D. Thesis, KTH Royal Institute of Technology
, Stockholm
.26.
Zhou
, Y.
, Yi
, Z.
, and Stanciulescu
, I.
, 2019
, “Nonlinear Buckling and Postbuckling of Shallow Arches With Vertical Elastic Supports
,” ASME J. Appl. Mech.
, 86
(6
), p. 061001
. 10.1115/1.4042572Copyright © 2020 by ASME
You do not currently have access to this content.