Abstract

We investigate the normal impact of a rigid sphere on a half-space of elasto-plastic auxetic/metal foam using the finite element method. The dependence of the coefficient of restitution, peak force, maximum displacement, and contact duration on the yield strain, impact velocity, and elastic and plastic Poisson’s ratio is analyzed. For a given elastic Poisson’s ratio, the coefficient of restitution generally decreases with an increase in the plastic Poisson’s ratio and impact velocity. When the plastic Poisson’s is maintained constant, the coefficient of restitution increases with an increase of the elastic Poisson’s ratio. These trends are explained using plastic energy dissipation. The energy dissipation trends are further investigated by decomposing it into deviatoric and hydrostatic parts. For a given impact velocity, the peak force is relatively insensitive to most of the elastic and plastic Poisson’s ratio combinations. We also show that for the cases where the elastic and plastic Poisson’s ratios are equal, the coefficient of restitution is relatively insensitive to their actual values. These findings can guide researchers to identify the right elastic and plastic Poisson’s ratio combinations so that lattice materials with exceptional energy absorbing capacity can be designed using topology optimization.

References

1.
Maiti
,
S. K.
,
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1984
, “
Deformation and Energy Absorption Diagrams for Cellular Solids
,”
Acta Metall.
,
32
(
11
), pp.
1963
1975
. 10.1016/0001-6160(84)90177-9
2.
Dharmasena
,
K. P.
,
Queheillalt
,
D. T.
,
Wadley
,
H. N. G.
,
Dudt
,
P.
,
Chen
,
Y.
,
Knight
,
D.
,
Evans
,
A. G.
, and
Deshpande
,
V. S.
,
2010
, “
Dynamic Compression of Metallic Sandwich Structures During Planar Impulsive Loading in Water
,”
Eur. J. Mech. A/Solids
,
29
(
1
), pp.
56
67
. 10.1016/j.euromechsol.2009.05.003
3.
Rathbun
,
H. J.
,
Radford
,
D. D.
,
Xue
,
Z.
,
He
,
M. Y.
,
Yang
,
J.
,
Deshpande
,
V. S.
,
Fleck
,
N. A.
,
Hutchinson
,
J. W.
,
Zok
,
F. W.
, and
Evans
,
A. G.
,
2006
, “
Performance of Metallic Honeycomb-Core Sandwich Beams Under Shock Loading
,”
Int. J. Solids. Struct.
,
43
(
6
), pp.
1746
1763
. 10.1016/j.ijsolstr.2005.06.079
4.
Xue
,
Z.
, and
Hutchinson
,
J. W.
,
2004
, “
A Comparative Study of Impulse-Resistant Metal Sandwich Plates
,”
Int. J. Impact Eng.
,
30
(
10
), pp.
1283
1305
. 10.1016/j.ijimpeng.2003.08.007
5.
Hussein
,
A.
,
Hao
,
L.
,
Yan
,
C.
,
Everson
,
R.
, and
Young
,
P.
,
2013
, “
Advanced Lattice Support Structures for Metal Additive Manufacturing
,”
J. Mater. Process. Technol.
,
213
(
7
), pp.
1019
1026
. 10.1016/j.jmatprotec.2013.01.020
6.
Rosen
,
D. W.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput. Aided Design Appl.
,
4
(
5
), pp.
585
594
. 10.1080/16864360.2007.10738493
7.
Rosen
,
D. W.
,
2007
, “
Design for Additive Manufacturing: A Method to Explore Unexplored Regions of the Design Space
,”
Eighteenth Annual Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 6–8
, pp.
402
415
.
8.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
,
Ahuja
,
B.
, and
Martina
,
F.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP. Ann.
,
65
(
2
), pp.
737
760
. 10.1016/j.cirp.2016.05.004
9.
Wang
,
F.
,
Sigmund
,
O.
, and
Jensen
,
J. S.
,
2014
, “
Design of Materials With Prescribed Nonlinear Properties
,”
J. Mech. Phys. Solids.
,
69
, pp.
156
174
. 10.1016/j.jmps.2014.05.003
10.
Clausen
,
A.
,
Wang
,
F.
,
Jensen
,
J. S.
,
Sigmund
,
O.
, and
Lewis
,
J. A.
,
2015
, “
Topology Optimized Architectures With Programmable Poisson’s Ratio Over Large Deformations
,”
Adv. Mater.
,
27
(
37
), pp.
5523
5527
. 10.1002/adma.201502485
11.
Wang
,
F.
,
2018
, “
Systematic Design of 3d Auxetic Lattice Materials With Programmable Poisson’s Ratio for Finite Strains
,”
J. Mech. Phys. Solids.
,
114
, pp.
303
318
. 10.1016/j.jmps.2018.01.013
12.
Allen
,
T.
,
Shepherd
,
J.
,
Hewage
,
T. A. M.
,
Senior
,
T.
,
Foster
,
L.
, and
Alderson
,
A.
,
2015
, “
Low-Kinetic Energy Impact Response of Auxetic and Conventional Open-Cell Polyurethane Foams
,”
Phys. Status Solidi (b)
,
252
(
7
), pp.
1631
1639
. 10.1002/pssb.201451715
13.
Lim
,
T. C.
,
Alderson
,
A.
, and
Alderson
,
K. L.
,
2014
, “
Experimental Studies on the Impact Properties of Auxetic Materials
,”
Phys. Status Solidi (b)
,
251
(
2
), pp.
307
313
. 10.1002/pssb.201384249
14.
Hou
,
X.
,
Deng
,
Z.
, and
Zhang
,
K.
,
2016
, “
Dynamic Crushing Strength Analysis of Auxetic Honeycombs
,”
Acta Mech. Solida Sinica
,
29
(
5
), pp.
490
501
. 10.1016/S0894-9166(16)30267-1
15.
Hu
,
L. L.
,
Zhou
,
M. Z.
, and
Deng
,
H.
,
2018
, “
Dynamic Crushing Response of Auxetic Honeycombs Under Large Deformation: Theoretical Analysis and Numerical Simulation
,”
Thin-Walled Struct.
,
131
, pp.
373
384
. 10.1016/j.tws.2018.04.020
16.
Hu
,
L. L.
,
Zhou
,
M. Z.
, and
Deng
,
H.
,
2019
, “
Dynamic Indentation of Auxetic and Non-Auxetic Honeycombs Under Large Deformation
,”
Compos. Struct.
,
207
, pp.
323
330
. 10.1016/j.compstruct.2018.09.066
17.
Imbalzano
,
G.
,
Linforth
,
S.
,
Ngo
,
T. D.
,
Lee
,
P. V. S.
, and
Tran
,
P.
,
2018
, “
Blast Resistance of Auxetic and Honeycomb Sandwich Panels: Comparisons and Parametric Designs
,”
Compos. Struct.
,
183
, pp.
242
261
. 10.1016/j.compstruct.2017.03.018
18.
Imbalzano
,
G.
,
Tran
,
P.
,
Ngo
,
T. D.
, and
Lee
,
P. V. S.
,
2017
, “
Three-Dimensional Modelling of Auxetic Sandwich Panels for Localised Impact Resistance
,”
J. Sandwich Struct. Mater.
,
19
(
3
), pp.
291
316
. 10.1177/1099636215618539
19.
McShane
,
G. J.
,
Radford
,
D. D.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2006
, “
The Response of Clamped Sandwich Plates With Lattice Cores Subjected to Shock Loading
,”
Eur. J. Mech. A/Solids
,
25
(
2
), pp.
215
229
. 10.1016/j.euromechsol.2005.08.001
20.
Dirrenberger
,
J.
,
Forest
,
S.
, and
Jeulin
,
D.
,
2013
, “
Effective Elastic Properties of Auxetic Microstructures: Anisotropy and Structural Applications
,”
Int. J. Mech. Mater. Design
,
9
(
1
), pp.
21
33
. 10.1007/s10999-012-9192-8
21.
Dirrenberger
,
J.
,
Forest
,
S.
, and
Jeulin
,
D.
,
2012
, “
Elastoplasticity of Auxetic Materials
,”
Comput. Mater. Sci.
,
64
, pp.
57
61
. 10.1016/j.commatsci.2012.03.036
22.
Ghaedizadeh
,
A.
,
Shen
,
J.
,
Ren
,
X.
, and
Xie
,
Y.
,
2016
, “
Tuning the Performance of Metallic Auxetic Metamaterials by Using Buckling and Plasticity
,”
Materials
,
9
(
1
), p.
54
. 10.3390/ma9010054
23.
Gilat
,
R.
, and
Aboudi
,
J.
,
2013
, “
Behavior of Elastoplastic Auxetic Microstructural Arrays
,”
Materials
,
6
(
3
), pp.
726
737
. 10.3390/ma6030726
24.
Tabor
,
D.
,
2000
,
The Hardness of Metals
,
Oxford University Press
,
London
.
25.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
26.
Kumar
,
N.
,
Khaderi
,
S. N.
, and
Rao
,
K. T.
,
2020
, “
Elasto-Plastic Indentation of Auxetic and Metal Foams
,”
ASME J. Appl. Mech.
,
87
(
1
), p.
011006
. 10.1115/1.4045002
27.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2000
, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids.
,
48
(
6–7
), pp.
1253
1283
. 10.1016/S0022-5096(99)00082-4
28.
Chen
,
C
,
Lu
,
T. J.
, and
Fleck
,
N.A.
,
1999
, “
Effect of Imperfections on the Yielding of Two-Dimensional Foams
,”
J. Mech. Phys. Solids.
,
47
(
11
), pp.
2235
2272
. 10.1016/S0022-5096(99)00030-7
29.
Needleman
,
A.
,
Tvergaard
,
V.
, and
Van der Giessen
,
E.
,
2015
, “
Indentation of Elastically Soft and Plastically Compressible Solids
,”
Acta. Mech. Sin.
,
31
(
4
), pp.
473
480
. 10.1007/s10409-015-0467-9
30.
Johnson
,
K. L.
,
1970
, “
The Correlation of Indentation Experiments
,”
J. Mech. Phys. Solids.
,
18
(
2
), pp.
115
126
. 10.1016/0022-5096(70)90029-3
You do not currently have access to this content.