Abstract

The thermo-mechanical response of an additively manufactured photopolymer-particulate composite under conditions of macroscopic uniaxial compression without lateral confinement at overall strain rates of 400–2000 s−1 is studied. The material has a direct-ink-written unidirectional structure. Computations are performed to quantify the effects of microstructure attributes including anisotropy, defects, and filament size on localized deformation, energy dissipations, and temperature rises. To this effect, an experimentally informed Lagrangian finite element framework is used, accounting for finite-strain elastic–plastic deformation, strain-rate effect, failure initiation and propagation, post-failure internal contact and friction, heat generation due to friction and inelastic bulk deformation, and heat conduction. The analysis focuses on the material behavior under overall compression. Despite relatively low contribution to overall heating, friction is localized at fracture sites and plays an essential role in the development of local temperature spikes unknown as hotspots. The microstructural attributes are found to significantly affect the development of the hotspots, with local heating most pronounced when loading is transverse to the filaments or when the material has higher porosities, stronger inter-filament junctions, or smaller filament sizes. Samples with smaller filament sizes undergo more damage, exhibit higher frictional dissipation, and develop larger hotspots that occur primarily at failure sites.

References

1.
Wong
,
K. V.
, and
Hernandez
,
A.
,
2012
, “
A Review of Additive Manufacturing
,”
ISRN Mech. Eng.
,
2012
, pp.
1
10
. 10.5402/2012/208760
2.
Murray
,
A. K.
,
Isik
,
T.
,
Ortalan
,
V.
,
Gunduz
,
I. E.
,
Son
,
S. F.
,
Chiu
,
G. T.-C.
, and
Rhoads
,
J. F.
,
2017
, “
Two-Component Additive Manufacturing of Nanothermite Structures via Reactive Inkjet Printing
,”
J. Appl. Phys.
,
122
(
18
), p.
184901
. 10.1063/1.4999800
3.
Muravyev
,
N. V.
,
Monogarov
,
K. A.
,
Schaller
,
U.
,
Fomenkov
,
I. V.
, and
Pivkina
,
A. N.
,
2019
, “
Progress in Additive Manufacturing of Energetic Materials: Creating the Reactive Microstructures With High Potential of Applications
,”
Propellants, Explos., Pyrotech.
,
44
(
8
), pp.
941
969
. 10.1002/prep.201900060
4.
Fleck
,
T. J.
,
Murray
,
A. K.
,
Gunduz
,
I. E.
,
Son
,
S. F.
,
Chiu
,
G. T. C.
, and
Rhoads
,
J. F.
,
2017
, “
Additive Manufacturing of Multifunctional Reactive Materials
,”
Addit. Manuf.
,
17
, pp.
176
182
. 10.1016/j.addma.2017.08.008
5.
Ruz-Nuglo
,
F.
,
Groven
,
L.
, and
Puszynski
,
J. A.
,
2014
, “
Additive Manufacturing for Energetic Components and Materials
,”
Proceedings of 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
,
Cleveland, OH
,
July 28–30
, p.
3894
.
6.
Huang
,
C.
,
Jian
,
G.
,
DeLisio
,
J. B.
,
Wang
,
H.
, and
Zachariah
,
M. R.
,
2015
, “
Electrospray Deposition of Energetic Polymer Nanocomposites With High Mass Particle Loadings: A Prelude to 3D Printing of Rocket Motors
,”
Adv. Eng. Mater.
,
17
(
1
), pp.
95
101
. 10.1002/adem.201400151
7.
Clark
,
B.
,
Zhang
,
Z.
,
Christopher
,
G.
, and
Pantoya
,
M. L.
,
2017
, “
3D Processing and Characterization of Acrylonitrile Butadiene Styrene (ABS) Energetic Thin Films
,”
J. Mater. Sci.
,
52
(
2
), pp.
993
1004
. 10.1007/s10853-016-0395-5
8.
Wang
,
H.
,
DeLisio
,
J. B.
,
Jian
,
G.
,
Zhou
,
W.
, and
Zachariah
,
M. R.
,
2015
, “
Electrospray Formation and Combustion Characteristics of Iodine-Containing Al/CuO Nanothermite Microparticles
,”
Combust. Flame
,
162
(
7
), pp.
2823
2829
. 10.1016/j.combustflame.2015.04.005
9.
Wang
,
H.
,
Jian
,
G.
,
Egan
,
G. C.
, and
Zachariah
,
M. R.
,
2014
, “
Assembly and Reactive Properties of Al/CuO Based Nanothermite Microparticles
,”
Combust. Flame
,
161
(
8
), pp.
2203
2208
. 10.1016/j.combustflame.2014.02.003
10.
Ihnen
,
A. C.
,
Lee
,
W. Y.
,
Fuchs
,
B.
,
Petrock
,
A. M.
, and
Stec
,
D.
, III
,
2016
, “
Ink Jet Printing and Patterning of Explosive Materials
,”
Stevens Institute of Technology, US Secretary of Army
,
U.S. Patent No. 9,296,241 B1
.
11.
Tappan
,
A. S.
,
Ball
,
J. P.
, and
Colovos
,
J. W.
,
2012
, “
Inkjet Printing of Energetic Materials: Sub-Micron Al/MoO3 and Al/Bi2O3 Thermite
,”
Sandia National Laboratories Presentation SAND2011-8957C
,
Albuquerque, NM
.
12.
McClain
,
M.
,
Gunduz
,
I.
, and
Son
,
S.
,
2019
, “
Additive Manufacturing of Ammonium Perchlorate Composite Propellant With High Solids Loadings
,”
Proc. Combust. Inst.
,
37
(
3
), pp.
3135
3142
. 10.1016/j.proci.2018.05.052
13.
Lewis
,
J. A.
,
2006
, “
Direct Ink Writing of 3D Functional Materials
,”
Adv. Funct. Mater.
,
16
(
17
), pp.
2193
2204
. 10.1002/adfm.200600434
14.
Stansbury
,
J. W.
, and
Idacavage
,
M. J.
,
2016
, “
3D Printing With Polymers: Challenges Among Expanding Options and Opportunities
,”
Dent. Mater.
,
32
(
1
), pp.
54
64
. 10.1016/j.dental.2015.09.018
15.
Oropallo
,
W.
, and
Piegl
,
L. A.
,
2016
, “
Ten Challenges in 3D Printing
,”
Eng. Comput.
,
32
(
1
), pp.
135
148
. 10.1007/s00366-015-0407-0
16.
Lee
,
C.
,
Kim
,
S.
,
Kim
,
H.
, and
Ahn
,
S.
,
2007
, “
Measurement of Anisotropic Compressive Strength of Rapid Prototyping Parts
,”
J. Mater. Process. Technol.
,
187
, pp.
627
630
. 10.1016/j.jmatprotec.2006.11.095
17.
Ahn
,
S.-H.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyp. J.
,
8
(
4
), pp.
248
257
. 10.1108/13552540210441166
18.
Mueller
,
A.
,
Schmalzer
,
A.
,
Bowden
,
P.
,
Tappan
,
B.
,
White
,
A.
, and
Menikoff
,
R.
,
2019
, “
Diameter Effects on the Directional Anisotropic Detonation Behavior of Strand Structured Additively Manufactured Explosives
,”
21st Biennial Conference of the APS Topical Group on Shock Compression of Condensed Matter
,
Portland, OR
,
June 16–21
, Vol.
64
.
19.
O′Grady
,
C.
,
Tappan
,
A.
,
Knepper
,
R.
,
Rupper
,
S.
,
Vasiliauskas
,
J.
, and
Marquez
,
M.
,
2019
, “
Investigating Typical Additive Manufacturing Defect Geometries Using Physical Vapor Deposition Explosives as a Model System
,”
21st Biennial Conference of the APS Topical Group on Shock Compression of Condensed Matter
,
Portland, OR
,
June 16–21
, Vol.
64
.
20.
Keyhani
,
A.
,
Kim
,
S.
,
Horie
,
Y.
, and
Zhou
,
M.
,
2019
, “
Energy Dissipation in Polymer-Bonded Explosives With Various Levels of Constituent Plasticity and Internal Friction
,”
Comput. Mater. Sci.
,
159
, pp.
136
149
. 10.1016/j.commatsci.2018.12.008
21.
Field
,
J.
,
Bourne
,
N.
,
Palmer
,
S.
,
Walley
,
S.
,
Sharma
,
J.
, and
Beard
,
B.
,
1992
, “
Hot-Spot Ignition Mechanisms for Explosives and Propellants [and Discussion]
,”
Philos. Trans. R. Soc., A
,
339
(
1654
), pp.
269
283
. 10.1098/rsta.1992.0034
22.
Hong
,
S. Y.
,
Kim
,
Y. C.
,
Wang
,
M.
,
Kim
,
H.-I.
,
Byun
,
D.-Y.
,
Nam
,
J.-D.
,
Chou
,
T.-W.
,
Ajayan
,
P. M.
,
Ci
,
L.
, and
Suhr
,
J.
,
2018
, “
Experimental Investigation of Mechanical Properties of UV-Curable 3D Printing Materials
,”
Polymer
,
145
, pp.
88
94
. 10.1016/j.polymer.2018.04.067
23.
Zhang
,
P.
, and
To
,
A. C.
,
2016
, “
Transversely Isotropic Hyperelastic-Viscoplastic Model for Glassy Polymers With Application to Additive Manufactured Photopolymers
,”
Int. J. Plast.
,
80
, pp.
56
74
. 10.1016/j.ijplas.2015.12.012
24.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
Evolution of Plastic Anisotropy in Amorphous Polymers During Finite Straining
,”
Int. J. Plast.
,
9
(
6
), pp.
697
720
. 10.1016/0749-6419(93)90034-N
25.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
. 10.1016/0022-5096(93)90013-6
26.
Wagner
,
K. B.
,
Keyhani
,
A.
,
Boddorff
,
A. K.
,
Kennedy
,
G.
,
Montaigne
,
D.
,
Jensen
,
B. J.
,
Beason
,
M.
,
Zhou
,
M.
, and
Thadhani
,
N. N.
,
2020
, “
High-Speed X-ray Phase Contrast Imaging and Digital Image Correlation Analysis of Microscale Shock Response of an Additively Manufactured Energetic Material Simulant
,”
J. Appl. Phys.
,
127
(
23
), p.
23
. 10.1063/5.0003525
27.
Keyhani
,
A.
, and
Zhou
,
M.
,
2020
, “
Thermo-Mechanical Response of an Additively Manufactured Energetic Material Simulant to Dynamic Loading
,”
Submitted for publication
.
28.
Keyhani
,
A.
,
Yang
,
R.
, and
Zhou
,
M.
,
2019
, “
Novel Capability for Microscale In-Situ Imaging of Temperature and Deformation Fields Under Dynamic Loading
,”
Exp. Mech.
,
59
(
5
), pp.
1
16
. 10.1007/s11340-019-00495-2
29.
Qu
,
J.
, and
Cherkaoui
,
M.
,
2006
,
Fundamentals of Micromechanics of Solids
,
Wiley
,
Hoboken, NJ
, pp.
120
153
.
30.
Zhou
,
M.
,
Ravichandran
,
G.
, and
Rosakis
,
A. J.
,
1996
, “
Dynamically Propagating Shear Bands in Impact-Loaded Prenotched Plates—II. Numerical Simulations
,”
J. Mech. Phys. Solids
,
44
(
6
), pp.
1007
1032
. 10.1016/0022-5096(96)00004-X
31.
Drucker
,
D.
,
1973
, “
Plasticity Theory Strength-Differential (SD) Phenomenon, and Volume Expansion in Metals and Plastics
,”
Metall. Trans.
,
4
(
3
), p.
667
. 10.1007/BF02643073
32.
Seltzer
,
R.
,
Cisilino
,
A. P.
,
Frontini
,
P. M.
, and
Mai
,
Y.-W.
,
2011
, “
Determination of the Drucker–Prager Parameters of Polymers Exhibiting Pressure-Sensitive Plastic Behaviour by Depth-Sensing Indentation
,”
Int. J. Mech. Sci.
,
53
(
6
), pp.
471
478
. 10.1016/j.ijmecsci.2011.04.002
33.
Hooputra
,
H.
,
Gese
,
H.
,
Dell
,
H.
, and
Werner
,
H.
,
2004
, “
A Comprehensive Failure Model for Crashworthiness Simulation of Aluminium Extrusions
,”
Int. J. Crashworthiness
,
9
(
5
), pp.
449
463
. 10.1053/ijcr.2004.0289
34.
Pijaudier-Cabot
,
G.
, and
Bazant
,
Z. P.
,
1987
, “
Nonlocal Damage Theory
,”
J. Eng. Mech.
,
113
(
10
), pp.
1512
1533
. 10.1061/(ASCE)0733-9399(1987)113:10(1512)
35.
Comi
,
C.
,
2001
, “
A Non-Local Model With Tension and Compression Damage Mechanisms
,”
Eur. J. Mech. A Solids
,
20
(
1
), pp.
1
22
. 10.1016/S0997-7538(00)01111-6
36.
Prakash
,
C.
,
Gunduz
,
I. E.
,
Oskay
,
C.
, and
Tomar
,
V.
,
2018
, “
Effect of Interface Chemistry and Strain Rate on Particle-Matrix Delamination in an Energetic Material
,”
Eng. Fract. Mech.
,
191
, pp.
46
64
. 10.1016/j.engfracmech.2018.01.010
37.
Olokun
,
A.
,
Li
,
B.
,
Prakash
,
C.
,
Men
,
Z.
,
Dlott
,
D. D.
, and
Tomar
,
V.
,
2019
, “
Examination of Local Microscale-Microsecond Temperature Rise in HMX-HTPB Energetic Material Under Impact Loading
,”
JOM
,
71
(
10
), pp.
3531
3535
. 10.1007/s11837-019-03709-z
You do not currently have access to this content.