Abstract

This work proposes a new method for the fatigue damage evaluation of vibrational loads, based on preceding investigations on the relationship between stresses and modal velocities. As a first step, the influence of the geometry on the particular relationship is studied. Therefore, an analytic expression for Euler Bernoulli beams with a non-constant cross section is derived. Afterward, a general method for obtaining geometric factors from finite element (FE) models is proposed. In order to ensure a fast fatigue damage evaluation, strongly simplified FE-models are used for the determination of both factors and measurement locations. The entire method is demonstrated on three mechanical structures and indicates a better compromise between effort and accuracy than existing methods. For all examples, the usage of velocities and geometric factors obtained from simplified FE models enables a sufficient fatigue damage calculation.

References

1.
ISO
,
2012
.
ISO 16750-3: Road Vehicles - Environmental Conditions and Testing for Electrical and Electronic Equipment - Mechanical Loads
,
latest ed
.
International Organization for Standardization
,
Geneva
.
2.
Henderson
,
G.
, and
Piersol
,
A.
,
1995
, “
Fatigue Damage Related Descriptor for Random Vibration Test Environments
,”
Sound Vibration
,
29
(
10
), pp.
20
24
.
3.
Benasciutti
,
D.
,
Sherratt
,
F.
, and
Cristofori
,
A.
,
2016
, “
Recent Developments in Frequency Domain Multi-axial Fatigue Analysis
,”
Int. J. Fatigue.
,
91
, pp.
397
413
. 10.1016/j.ijfatigue.2016.04.012
4.
Benasciutti
,
D.
,
2014
, “
Some Analytical Expressions to Measure the Accuracy of the Equivalent Von Mises Stress in Vibration Multiaxial Fatigue
,”
J. Sound. Vib.
,
333
(
18
), pp.
4326
4340
. 10.1016/j.jsv.2014.04.047
5.
Nieslony
,
A.
,
2016
, “
A Critical Analysis of the Mises Stress Criterion Used in Frequency Domain Fatigue Life Prediction
,”
Frattura ed Integrit Strutturale
,
10
(
38
), pp.
177
183
. 10.3221/IGF-ESIS.38.24
6.
Bonte
,
M.
,
de Boer
,
A.
, and
Liebregts
,
R.
,
2007
, “
Determining the Von Mises Stress Power Spectral Density for Frequency Domain Fatigue Analysis Including Out-of-Phase Stress Components
,”
J. Sound. Vib.
,
302
(
1–2
), pp.
379
386
. 10.1016/j.jsv.2006.11.025
7.
Cianetti
,
F.
,
Palmieri
,
M.
,
Braccesi
,
C.
, and
Morettini
,
G.
,
2018
, “
Correction Formula Approach to Evaluate Fatigue Damage Induced by Non-Gaussian Stress State
,”
Proc. Int. Conf. Stress Anal.
,
8
, pp.
390
398
.
8.
Carpinteri
,
A.
,
Fortese
,
G. Ronchei
,
Spagnoli
,
A.
, and
Vantadori
,
S.
,
2016
, “
Fatigue Life Evaluation of Metallic Structures Under Multiaxial Random Loading
,”
Int. J. Fatigue.
,
90
, pp.
191
199
. 10.1016/j.ijfatigue.2016.05.007
9.
Carpinteri
,
A.
,
Spagnoli
,
A.
, and
Vantadori
,
S.
,
2014
, “
Reformulation in the Frequency Domain of a Critical Plane-Based Multiaxial Fatigue Criterion
,”
Int. J. Fatigue.
,
67
, pp.
55
61
. 10.1016/j.ijfatigue.2014.01.008
10.
Carpinteri
,
A.
,
Spagnoli
,
A.
, and
Vantadori
,
S.
,
2017
, “
Effect of Spectral Cross-Correlation on Multiaxial Fatigue Damage: Simulations Using the Critical Plane Approach
,”
Frattura ed Integrit Strutturale
,
10
(
41
), pp.
40
44
. 10.3221/IGF-ESIS.41.06
11.
Cristofori
,
A.
,
Benasciutti
,
D.
, and
Tovo
,
R.
,
2011
, “
A Stress Invariant Based Spectral Method to Estimate Fatigue Life Under Multiaxial Random Loading
,”
Int. J. Fatigue.
,
33
, pp.
887
899
. 10.1016/j.ijfatigue.2011.01.013
12.
Kersch
,
K.
,
Schmidt
,
A.
, and
Woschke
,
E.
,
2020
, “
Multiaxial Fatigue Damage Evaluation: A New Method Based on Modal Velocities
,”
J. Sound. Vib.
,
476
, p.
115297
. 10.1016/j.jsv.2020.115297
13.
Hunt
,
F.
,
1960
, “
Stress and Strain Limits on Attainable Velocity in Mechanical Vibration
,”
J. Acoust. Soc. Am.
,
32
(
9
), pp.
1123
1128
. 10.1121/1.1908363
14.
Crandall
,
S.
,
1962
, “
Relation Between Strain and Velocity in Resonant Vibration
,”
J. Acoust. Soc. Am.
,
34
(
12
), pp.
1960
1961
. 10.1121/1.1909161
15.
Norton
,
M.
, and
Karczub
,
D.
eds.,
2003
,
Fundamentals of Noise and Vibration Analysis for Engineers
, 2nd ed.,
Cambridge University Press
,
Cambridge
. p.
1.10.1
.
Chap. 1
.
16.
Sanger
,
D.
,
1968
, “
Transverse Vibration of a Class of Non-Uniform Beams
,”
J. Mech. Eng. Sci.
,
10
(
2
), pp.
111
120
. 10.1243/JMES_JOUR_1968_010_018_02
17.
Abrate
,
S.
,
1995
, “
Vibration of Non-Uniform Rods and Beams
,”
J. Sound. Vib.
,
185
(
4
), pp.
703
716
. 10.1006/jsvi.1995.0410
18.
Li
,
Q.
,
2000
, “
Exact Solutions for Free Longitudinal Vibrations of Non-Uniform Rods
,”
J. Sound. Vib.
,
234
(
1
), pp.
1
19
. 10.1006/jsvi.1999.2856
19.
Pouyet
,
J.
, and
Lataillade
,
J.
,
1981
, “
Torsional Vibrations of a Shaft With Non-Uniform Cross Section
,”
J. Sound. Vib.
,
76
(
1
), pp.
13
22
. 10.1016/0022-460X(81)90287-X
20.
Sweitzer
,
K.
,
Hull
,
C.
, and
Piersol
,
A.
eds,
2009
,
Harris Shock and Vibration Handbook
, 2nd ed.,
McGraw-Hill
,
New York, NY
. pp.
40.6
40.20
.
Chap. 40
.
21.
Woo
,
Y.
,
2009
, “
Automatic Simplification of Solid Models for Engineering Analysis Independent of Modeling Sequences
,”
J. Mech. Sci. Technol.
,
23
, pp.
1939
1948
. 10.1007/s12206-009-0509-y
You do not currently have access to this content.