Abstract

Open nanomesh structures with nano/micro-scale geometric dimensions are important candidates for transparent, soft, and stretchable microelectrodes. This study developed analytical and numerical mechanics models for three types of nanomeshes that consist of regular polygons and straight traces. The analytical models described the transparency, effective stiffness, and stretchability of the nanomeshes and agree with the finite element analysis. The mechanical performances of the nanomeshes are compared based on the same level of transparency. The validated analytical expressions provide convenient guidelines for designing the nanomeshes to have levels of transparency and mechanical properties suitable for bio-integrated applications.

References

1.
Ko
,
H. C.
,
Stoykovich
,
M. P.
,
Song
,
J.
,
Malyarchuk
,
V.
,
Choi
,
W. M.
,
Yu
,
C. -J.
,
Geddes Iii
,
J. B.
,
Xiao
,
J.
,
Wang
,
S.
, and
Huang
,
Y.
, et al.,
2008
, “
A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics
,”
Nature
,
454
(
7205
), pp.
748
753
. 10.1038/nature07113
2.
Lipomi
,
D. J.
,
Tee
,
B. C. -K.
,
Vosgueritchian
,
M.
, and
Bao
,
Z.
,
2011
, “
Stretchable Organic Solar Cells
,”
Adv. Mater.
,
23
(
15
), pp.
1771
1775
. 10.1002/adma.201004426
3.
Jacobs
,
H. O.
,
Tao
,
A. R.
,
Schwartz
,
A.
,
Gracias
,
D. H.
, and
Whitesides
,
G. M.
,
2002
, “
Fabrication of a Cylindrical Display by Patterned Assembly
,”
Science
,
296
(
5566
), pp.
323
325
. 10.1126/science.1069153
4.
Lumelsky
,
V. J.
,
Shur
,
M. S.
, and
Wagner
,
S.
,
2001
, “
Sensitive Skin
,”
IEEE Sens. J.
,
1
(
1
), pp.
41
51
. 10.1109/JSEN.2001.923586
5.
Cheng
,
T.
,
Zhang
,
Y.
,
Lai
,
W.-Y.
, and
Huang
,
W.
,
2015
, “
Stretchable Thin-Film Electrodes for Flexible Electronics With High Deformability and Stretchability
,”
Adv. Mater.
,
27
(
22
), pp.
3349
3376
. 10.1002/adma.201405864
6.
Guo
,
Y.
,
Fang
,
Z.
,
Du
,
M.
,
Yang
,
L.
,
Shao
,
L.
,
Zhang
,
X.
,
Li
,
L.
,
Shi
,
J.
,
Tao
,
J.
,
Wang
,
J.
,
Li
,
H.
, and
Fang
,
Y.
,
2018
, “
Flexible and Biocompatible Nanopaper-Based Electrode Arrays for Neural Activity Recording
,”
Nano Res.
,
11
(
10
), pp.
5604
5614
. 10.1007/s12274-018-2005-0
7.
Kozai
,
T. D.
, and
Vazquez
,
A. L.
,
2015
, “
Photoelectric Artefact From Optogenetics and Imaging on Microelectrodes and Bioelectronics: New Challenges and Opportunities
,”
J. Mater. Chem. B.
,
3
(
25
), pp.
4965
4978
. 10.1039/C5TB00108K
8.
Seo
,
K. J.
,
Qiang
,
Y.
,
Bilgin
,
I.
,
Kar
,
S.
,
Vinegoni
,
C.
,
Weissleder
,
R.
, and
Fang
,
H.
,
2017
, “
Transparent Electrophysiology Microelectrodes and Interconnects From Metal Nanomesh
,”
ACS Nano
,
11
(
4
), pp.
4365
4372
. 10.1021/acsnano.7b01995
9.
Jang
,
H. Y.
,
Lee
,
S. -K.
,
Cho
,
S. H.
,
Ahn
,
J. -H.
, and
Park
,
S.
,
2013
, “
Fabrication of Metallic Nanomesh: Pt Nano-Mesh as a Proof of Concept for Stretchable and Transparent Electrodes
,”
Chem. Mater.
,
25
(
17
), pp.
3535
3538
. 10.1021/cm402085k
10.
Guo
,
C. F.
,
Liu
,
Q.
,
Wang
,
G.
,
Wang
,
Y.
,
Shi
,
Z.
,
Suo
,
Z.
,
Chu
,
C. -W.
, and
Ren
,
Z.
,
2015
, “
Fatigue-Free, Superstretchable, Transparent, and Biocompatible Metal Electrodes
,”
Proc. Natl. Acad. Sci. USA
,
112
(
40
), pp.
12332
12337
. 10.1073/pnas.1516873112
11.
Miyamoto
,
A.
,
Lee
,
S.
,
Cooray
,
N. F.
,
Lee
,
S.
,
Mori
,
M.
,
Matsuhisa
,
N.
,
Jin
,
H.
,
Yoda
,
L.
,
Yokota
,
T.
,
Itoh
,
A.
,
Sekino
,
M.
,
Kawasaki
,
H.
,
Ebihara
,
T.
,
Amagai
,
M.
, and
Someya
,
T.
,
2017
, “
Inflammation-Free, Gas-Permeable, Lightweight, Stretchable On-Skin Electronics With Nanomeshes
,”
Nat. Nanotechnol.
,
12
(
9
), p.
907
. 10.1038/nnano.2017.125
12.
Guo
,
C. F.
,
Sun
,
T.
,
Liu
,
Q.
,
Suo
,
Z.
, and
Ren
,
Z.
,
2014
, “
Highly Stretchable and Transparent Nanomesh Electrodes Made by Grain Boundary Lithography
,”
Nat. Commun.
,
5
(
1
), pp.
1
8
.
13.
Trung
,
T. Q.
, and
Lee
,
N. -E.
,
2017
, “
Materials and Devices for Transparent Stretchable Electronics
,”
J. Mater. Chem. C.
,
5
(
9
), pp.
2202
2222
. 10.1039/C6TC05346G
14.
Yang
,
W.
,
Liu
,
Q.
,
Gao
,
Z.
,
Yue
,
Z.
, and
Xu
,
B.
,
2018
, “
Theoretical Search for Heterogeneously Architected 2d Structures
,”
Proc. Natl. Acad. Sci. USA
,
115
(
31
), pp.
E7245
E7254
. 10.1073/pnas.1806769115
15.
Zheng
,
X.
,
Lee
,
H.
,
Weisgraber
,
T. H.
,
Shusteff
,
M.
,
DeOtte
,
J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
,
Biener
,
M. M.
,
Ge
,
Q.
,
Jackson
,
J. A.
,
Kucheyev
,
S. O.
,
Fang
,
N. X.
, and
Spadaccini
,
C. M.
,
2014
, “
Ultralight, Ultrastiff Mechanical Metamaterials
,”
Science
,
344
(
6190
), pp.
1373
1377
. 10.1126/science.1252291
16.
Bauer
,
J.
,
Schroer
,
A.
,
Schwaiger
,
R.
, and
Kraft
,
O.
,
2016
, “
Approaching Theoretical Strength in Glassy Carbon Nanolattices
,”
Nat. Mater.
,
15
(
4
), pp.
438
443
. 10.1038/nmat4561
17.
Berger
,
J.
,
Wadley
,
H.
, and
McMeeking
,
R.
,
2017
, “
Mechanical Metamaterials at the Theoretical Limit of Isotropic Elastic Stiffness
,”
Nature
,
543
(
7646
), pp.
533
537
. 10.1038/nature21075
18.
Coulais
,
C.
,
Teomy
,
E.
,
De Reus
,
K.
,
Shokef
,
Y.
, and
Van Hecke
,
M.
,
2016
, “
Combinatorial Design of Textured Mechanical Metamaterials
,”
Nature
,
535
(
7613
), pp.
529
532
. 10.1038/nature18960
19.
Florijn
,
B.
,
Coulais
,
C.
, and
van Hecke
,
M.
,
2014
, “
Programmable Mechanical Metamaterials
,”
Phys. Rev. Lett.
,
113
(
17
), p.
175503
. 10.1103/PhysRevLett.113.175503
20.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
. 10.1126/science.1252876
21.
Mousanezhad
,
D.
,
Babaee
,
S.
,
Ghosh
,
R.
,
Mahdi
,
E.
,
Bertoldi
,
K.
, and
Vaziri
,
A.
,
2015
, “
Honeycomb Phononic Crystals With Self-Similar Hierarchy
,”
Phys. Rev. B
,
92
(
10
), p.
104304
. 10.1103/PhysRevB.92.104304
22.
Zheludev
,
N. I.
, and
Plum
,
E.
,
2016
, “
Reconfigurable Nanomechanical Photonic Metamaterials
,”
Nat. Nanotechnol.
,
11
(
1
), p.
16
. 10.1038/nnano.2015.302
23.
Grünbaum
,
B.
, and
Shephard
,
G.
,
2013
, Tilings and Patterns (Dover Books on Mathematics Series), Dover Publications, Inc., Mineola, New York.
24.
Lu
,
Y.
,
Song
,
J.
,
Huang
,
J. Y.
, and
Lou
,
J.
,
2011
, “
Fracture of Sub-20 nm Ultrathin Gold Nanowires
,”
Adv. Funct. Mater.
,
21
(
20
), pp.
3982
3989
. 10.1002/adfm.201101224
25.
Zhang
,
Q.
,
Chen
,
G.
, and
Zhang
,
S.
,
2007
, “
Synthesis and Properties of Novel Soluble Polyimides Having a Spirobisindane-Linked Dianhydride Unit
,”
Polymer
,
48
(
8
), pp.
2250
2256
. 10.1016/j.polymer.2007.02.061
26.
Zhang
,
Y.
,
Wang
,
S.
,
Li
,
X.
,
Fan
,
J. A.
,
Xu
,
S.
,
Song
,
Y. M.
,
Choi
,
K.-J.
,
Yeo
,
W.-H.
,
Lee
,
W.
,
Nazaar
,
S. N.
,
Lu
,
B.
,
Yin
,
L.
,
Hwang
,
K.-C.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2014
, “
Experimental and Theoretical Studies of Serpentine Microstructures Bonded to Prestrained Elastomers for Stretchable Electronics
,”
Adv. Funct. Mater.
,
24
(
14
), pp.
2028
2037
. 10.1002/adfm.201302957
You do not currently have access to this content.