Abstract
Open nanomesh structures with nano/micro-scale geometric dimensions are important candidates for transparent, soft, and stretchable microelectrodes. This study developed analytical and numerical mechanics models for three types of nanomeshes that consist of regular polygons and straight traces. The analytical models described the transparency, effective stiffness, and stretchability of the nanomeshes and agree with the finite element analysis. The mechanical performances of the nanomeshes are compared based on the same level of transparency. The validated analytical expressions provide convenient guidelines for designing the nanomeshes to have levels of transparency and mechanical properties suitable for bio-integrated applications.
Issue Section:
Research Papers
References
1.
Ko
, H. C.
, Stoykovich
, M. P.
, Song
, J.
, Malyarchuk
, V.
, Choi
, W. M.
, Yu
, C. -J.
, Geddes Iii
, J. B.
, Xiao
, J.
, Wang
, S.
, and Huang
, Y.
, et al., 2008
, “A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics
,” Nature
, 454
(7205
), pp. 748
–753
. 10.1038/nature071132.
Lipomi
, D. J.
, Tee
, B. C. -K.
, Vosgueritchian
, M.
, and Bao
, Z.
, 2011
, “Stretchable Organic Solar Cells
,” Adv. Mater.
, 23
(15
), pp. 1771
–1775
. 10.1002/adma.2010044263.
Jacobs
, H. O.
, Tao
, A. R.
, Schwartz
, A.
, Gracias
, D. H.
, and Whitesides
, G. M.
, 2002
, “Fabrication of a Cylindrical Display by Patterned Assembly
,” Science
, 296
(5566
), pp. 323
–325
. 10.1126/science.10691534.
Lumelsky
, V. J.
, Shur
, M. S.
, and Wagner
, S.
, 2001
, “Sensitive Skin
,” IEEE Sens. J.
, 1
(1
), pp. 41
–51
. 10.1109/JSEN.2001.9235865.
Cheng
, T.
, Zhang
, Y.
, Lai
, W.-Y.
, and Huang
, W.
, 2015
, “Stretchable Thin-Film Electrodes for Flexible Electronics With High Deformability and Stretchability
,” Adv. Mater.
, 27
(22
), pp. 3349
–3376
. 10.1002/adma.2014058646.
Guo
, Y.
, Fang
, Z.
, Du
, M.
, Yang
, L.
, Shao
, L.
, Zhang
, X.
, Li
, L.
, Shi
, J.
, Tao
, J.
, Wang
, J.
, Li
, H.
, and Fang
, Y.
, 2018
, “Flexible and Biocompatible Nanopaper-Based Electrode Arrays for Neural Activity Recording
,” Nano Res.
, 11
(10
), pp. 5604
–5614
. 10.1007/s12274-018-2005-07.
Kozai
, T. D.
, and Vazquez
, A. L.
, 2015
, “Photoelectric Artefact From Optogenetics and Imaging on Microelectrodes and Bioelectronics: New Challenges and Opportunities
,” J. Mater. Chem. B.
, 3
(25
), pp. 4965
–4978
. 10.1039/C5TB00108K8.
Seo
, K. J.
, Qiang
, Y.
, Bilgin
, I.
, Kar
, S.
, Vinegoni
, C.
, Weissleder
, R.
, and Fang
, H.
, 2017
, “Transparent Electrophysiology Microelectrodes and Interconnects From Metal Nanomesh
,” ACS Nano
, 11
(4
), pp. 4365
–4372
. 10.1021/acsnano.7b019959.
Jang
, H. Y.
, Lee
, S. -K.
, Cho
, S. H.
, Ahn
, J. -H.
, and Park
, S.
, 2013
, “Fabrication of Metallic Nanomesh: Pt Nano-Mesh as a Proof of Concept for Stretchable and Transparent Electrodes
,” Chem. Mater.
, 25
(17
), pp. 3535
–3538
. 10.1021/cm402085k10.
Guo
, C. F.
, Liu
, Q.
, Wang
, G.
, Wang
, Y.
, Shi
, Z.
, Suo
, Z.
, Chu
, C. -W.
, and Ren
, Z.
, 2015
, “Fatigue-Free, Superstretchable, Transparent, and Biocompatible Metal Electrodes
,” Proc. Natl. Acad. Sci. USA
, 112
(40
), pp. 12332
–12337
. 10.1073/pnas.151687311211.
Miyamoto
, A.
, Lee
, S.
, Cooray
, N. F.
, Lee
, S.
, Mori
, M.
, Matsuhisa
, N.
, Jin
, H.
, Yoda
, L.
, Yokota
, T.
, Itoh
, A.
, Sekino
, M.
, Kawasaki
, H.
, Ebihara
, T.
, Amagai
, M.
, and Someya
, T.
, 2017
, “Inflammation-Free, Gas-Permeable, Lightweight, Stretchable On-Skin Electronics With Nanomeshes
,” Nat. Nanotechnol.
, 12
(9
), p. 907
. 10.1038/nnano.2017.12512.
Guo
, C. F.
, Sun
, T.
, Liu
, Q.
, Suo
, Z.
, and Ren
, Z.
, 2014
, “Highly Stretchable and Transparent Nanomesh Electrodes Made by Grain Boundary Lithography
,” Nat. Commun.
, 5
(1
), pp. 1
–8
.13.
Trung
, T. Q.
, and Lee
, N. -E.
, 2017
, “Materials and Devices for Transparent Stretchable Electronics
,” J. Mater. Chem. C.
, 5
(9
), pp. 2202
–2222
. 10.1039/C6TC05346G14.
Yang
, W.
, Liu
, Q.
, Gao
, Z.
, Yue
, Z.
, and Xu
, B.
, 2018
, “Theoretical Search for Heterogeneously Architected 2d Structures
,” Proc. Natl. Acad. Sci. USA
, 115
(31
), pp. E7245
–E7254
. 10.1073/pnas.180676911515.
Zheng
, X.
, Lee
, H.
, Weisgraber
, T. H.
, Shusteff
, M.
, DeOtte
, J.
, Duoss
, E. B.
, Kuntz
, J. D.
, Biener
, M. M.
, Ge
, Q.
, Jackson
, J. A.
, Kucheyev
, S. O.
, Fang
, N. X.
, and Spadaccini
, C. M.
, 2014
, “Ultralight, Ultrastiff Mechanical Metamaterials
,” Science
, 344
(6190
), pp. 1373
–1377
. 10.1126/science.125229116.
Bauer
, J.
, Schroer
, A.
, Schwaiger
, R.
, and Kraft
, O.
, 2016
, “Approaching Theoretical Strength in Glassy Carbon Nanolattices
,” Nat. Mater.
, 15
(4
), pp. 438
–443
. 10.1038/nmat456117.
Berger
, J.
, Wadley
, H.
, and McMeeking
, R.
, 2017
, “Mechanical Metamaterials at the Theoretical Limit of Isotropic Elastic Stiffness
,” Nature
, 543
(7646
), pp. 533
–537
. 10.1038/nature2107518.
Coulais
, C.
, Teomy
, E.
, De Reus
, K.
, Shokef
, Y.
, and Van Hecke
, M.
, 2016
, “Combinatorial Design of Textured Mechanical Metamaterials
,” Nature
, 535
(7613
), pp. 529
–532
. 10.1038/nature1896019.
Florijn
, B.
, Coulais
, C.
, and van Hecke
, M.
, 2014
, “Programmable Mechanical Metamaterials
,” Phys. Rev. Lett.
, 113
(17
), p. 175503
. 10.1103/PhysRevLett.113.17550320.
Silverberg
, J. L.
, Evans
, A. A.
, McLeod
, L.
, Hayward
, R. C.
, Hull
, T.
, Santangelo
, C. D.
, and Cohen
, I.
, 2014
, “Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,” Science
, 345
(6197
), pp. 647
–650
. 10.1126/science.125287621.
Mousanezhad
, D.
, Babaee
, S.
, Ghosh
, R.
, Mahdi
, E.
, Bertoldi
, K.
, and Vaziri
, A.
, 2015
, “Honeycomb Phononic Crystals With Self-Similar Hierarchy
,” Phys. Rev. B
, 92
(10
), p. 104304
. 10.1103/PhysRevB.92.10430422.
Zheludev
, N. I.
, and Plum
, E.
, 2016
, “Reconfigurable Nanomechanical Photonic Metamaterials
,” Nat. Nanotechnol.
, 11
(1
), p. 16
. 10.1038/nnano.2015.30223.
Grünbaum
, B.
, and Shephard
, G.
, 2013
, Tilings and Patterns (Dover Books on Mathematics Series), Dover Publications, Inc., Mineola, New York.24.
Lu
, Y.
, Song
, J.
, Huang
, J. Y.
, and Lou
, J.
, 2011
, “Fracture of Sub-20 nm Ultrathin Gold Nanowires
,” Adv. Funct. Mater.
, 21
(20
), pp. 3982
–3989
. 10.1002/adfm.20110122425.
Zhang
, Q.
, Chen
, G.
, and Zhang
, S.
, 2007
, “Synthesis and Properties of Novel Soluble Polyimides Having a Spirobisindane-Linked Dianhydride Unit
,” Polymer
, 48
(8
), pp. 2250
–2256
. 10.1016/j.polymer.2007.02.06126.
Zhang
, Y.
, Wang
, S.
, Li
, X.
, Fan
, J. A.
, Xu
, S.
, Song
, Y. M.
, Choi
, K.-J.
, Yeo
, W.-H.
, Lee
, W.
, Nazaar
, S. N.
, Lu
, B.
, Yin
, L.
, Hwang
, K.-C.
, Rogers
, J. A.
, and Huang
, Y.
, 2014
, “Experimental and Theoretical Studies of Serpentine Microstructures Bonded to Prestrained Elastomers for Stretchable Electronics
,” Adv. Funct. Mater.
, 24
(14
), pp. 2028
–2037
. 10.1002/adfm.201302957Copyright © 2020 by ASME
You do not currently have access to this content.