Abstract

We propose a systematic experimental procedure and quantitative analyses to investigate the effect of cyclic loading, and time-recovery, or aging, on the mechanical properties and microstructure of particle-binder composites. Specifically, we study three compositions that differ in aluminum content from the mock sugar formulation of plastic-bonded explosive PBXN-109. Cast cylindrical specimens are subjected to high-amplitude quasi-static cyclic compressive loading, before and after a 4-week time-recovery period, and their microstructures are analyzed using micro-computed tomography (CT). For quantitative analysis, we develop a procedure for identifying the spatial distribution of primary components of the formulation, including pore space, from micro-CT images. The study shows that the stress–strain response is highly nonlinear, without a distinct yield point, and exhibits hysteresis and cyclic stress softening, or Mullins effect, with cyclic stabilization. Specimens without aluminum exhibit considerable gain in stiffness and strength after the time-recovery or aging period, owing to the development of increased sucrose particle–particle interactions during the first cyclic loading. In contrast, specimens with aluminum micro-sized powder exhibit permanent loss of stiffness and strength, owing to large ductile plastic flow and irrecoverable damage. Further insight from micro-CT analysis is gained by observing that, for all compositions, the majority of microstructural changes occur near the specimen core. Specifically, affine radial deformation of the soft and debonded binder, as it is compressed by the non-affine longitudinal motion of stiffer sucrose crystals, is observed in the formulation without aluminum, whereas non-affine rearrangement of the binder toward the specimen core, and affine radial flow of sucrose particles away from the core due to ductile macroscopic deformation of the specimen, is observed in the formulations with aluminum content.

References

References
1.
Dargazany
,
R.
,
Khiêm
,
V. N.
, and
Itskov
,
M.
,
2014
, “
A Generalized Network Decomposition Model for the Quasi-Static Inelastic Behavior of Filled Elastomers
,”
Int. J. Plast.
,
63
, pp.
94
109
. 10.1016/j.ijplas.2013.12.004
2.
Mullins
,
L.
,
1948
, “
Effect of Stretching on the Properties of Rubber
,”
Rubber Chem. Technol.
,
21
(
2
), pp.
281
300
. 10.5254/1.3546914
3.
Mullins
,
L.
,
1969
, “
Softening of Rubber by Deformation
,”
Rubber Chem. Technol.
,
42
(
1
), pp.
339
362
. 10.5254/1.3539210
4.
Netzker
,
C.
,
Dal
,
H.
, and
Kaliske
,
M.
,
2010
, “
An Endochronic Plasticity Formulation for Filled Rubber
,”
Int. J. Solids Struct.
,
47
(
18–19
), pp.
2371
2379
. 10.1016/j.ijsolstr.2010.04.026
5.
Bergström
,
J. S.
, and
Boyce
,
M. C.
,
1998
, “
Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers
,”
J. Mech. Phys. Solids
,
46
(
5
), pp.
931
954
. 10.1016/S0022-5096(97)00075-6
6.
Miehe
,
C.
, and
Keck
,
J.
,
2000
, “
Superimposed Finite Elastic–Viscoelastic–Plastoelastic Stress Response With Damage in Filled Rubbery Polymers. Experiments, Modelling and Algorithmic Implementation
,”
J. Mech. Phys. Solids
,
48
(
2
), pp.
323
365
. 10.1016/S0022-5096(99)00017-4
7.
Akhavan
,
J.
,
2011
,
The Chemistry of Explosives
, 3rd ed.,
Royal Society of Chemistry
,
London, UK
.
8.
Idar
,
D. J.
,
Peterson
,
P. D.
,
Scott
,
P. D.
, and
Funk
,
D. J.
,
1998
, “
Low Strain Rate Compression Measurements of PBXN-9, PBX 9501, and Mock 9501
,”
AIP Conf. Proc.
,
429
(
1
), pp.
587
590
. 10.1063/1.55704
9.
Daniel
,
M. A.
,
2006
, “
Polyurethane Binder Systems for Polymer Bonded Explosives
,”
Tech. Rep. DSTO-GD-0492, Defence Science and Technology Organisation, Edinburgh (Australia) Weapons Systems DIV
.
10.
Palmer
,
S. J. P.
,
Field
,
J. E.
, and
Huntley
,
J. M.
,
1993
, “
Deformation, Strengths and Strains to Failure of Polymer Bonded Explosives
,”
Proc. R. Soc. London, A
,
440
(
1909
), pp.
399
419
. 10.1098/rspa.1993.0023
11.
Rae
,
P. J.
,
Goldrein
,
H. T.
,
Palmer
,
S. J. P.
,
Field
,
J. E.
, and
Lewis
,
A. L.
,
2002
, “
Quasi-static Studies of the Deformation and Failure of β-HMX Based Polymer Bonded Explosives
,”
Proc. R. Soc. London Ser. A: Math. Phys. Eng. Sci.
,
458
(
2019
), pp.
743
762
. 10.1098/rspa.2001.0894
12.
Ragaswamy
,
P.
,
Lewis
,
M. W.
,
Liu
,
C.
, and
Thompson
,
D. G.
,
2010
, “
Modeling the Mechanical Response of PBX 9501
,”
14th International Detonation Symposium
,
Coeur d'Alene, ID
,
Apr. 11–16
.
13.
Yılmaz
,
G. A.
,
Şen
,
D.
,
Kaya
,
Z. T.
, and
Tinçer
,
T.
,
2014
, “
Effect of Inert Plasticizers on Mechanical, Thermal, and Sensitivity Properties of Polyurethane-Based Plastic Bonded Explosives
,”
J. Appl. Polym. Sci.
,
131
(
20
), p.
40907
. 10.1002/app.40907
14.
Prakash
,
V.
,
Phadke
,
V. K.
,
Sinha
,
R. K.
, and
Singh
,
H.
,
2004
, “
Influence of Aluminium on Performance of HTPB-Based Aluminised PBXs
,”
Def. Sci. J.
,
54
(
4
), pp.
475
482
. 10.14429/dsj.54.2061
15.
Drodge
,
D. R.
, and
Williamson
,
D. M.
,
2016
, “
Understanding Damage in Polymer-Bonded Explosive Composites
,”
J. Mater. Sci.
,
51
(
2
), pp.
668
679
. 10.1007/s10853-013-7378-6
16.
Funk
,
D. J.
,
Laabs
,
G. W.
,
Peterson
,
P. D.
, and
Asay
,
B. W.
,
1996
, “
Measurement of the Stress/Strain Response of Energetic Materials as a Function of Strain Rate and Temperature: PBX 9501 and Mock 9501
,”
AIP Conf. Proc.
,
370
(
1
), pp.
145
148
. 10.1063/1.50735
17.
Thompson
,
D. G.
,
Idar
,
D. J.
,
Gray
,
G. T.
,
Blumenthal
,
W. R.
,
Cady
,
C. M.
,
Roemer
,
E. L.
,
Wright
,
W. J.
, and
Peterson
,
P. D.
,
2002
, “
Quasi-static and Dynamic Mechanical Properties of new and Virtually-Aged PBX 9501 Composites as a Function of Temperature and Strain Rate
,”
12th International Detonation Symposium
,
San Diego, CA
,
Aug. 11–16
.
18.
Paripovic
,
J.
, and
Davies
,
P.
,
2013
, “
Identification of the Dynamic Behavior of Surrogate Explosive Materials
,”
ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 8: 22nd Reliability, Stress Analysis, and Failure Prevention Conference; 25th Conference on Mechanical Vibration and Noise
,
Portland, OR
,
Aug. 4–7
.
19.
Paripovic
,
J.
, and
Davies
,
P.
,
2016
, “
A Model Identification Technique to Characterize the Low Frequency Behaviour of Surrogate Explosive Materials
,”
J. Phys.: Conf. Ser.
,
744
, p.
012124
. 10.1088/1742-6596/744/1/012124
20.
Grantham
,
S. G.
,
Siviour
,
C. R.
,
Proud
,
W. G.
, and
Field
,
J. E.
,
2004
, “
High-Strain Rate Brazilian Testing of an Explosive Simulant Using Speckle Metrology
,”
Meas. Sci. Technol.
,
15
(
9
), pp.
1867
1870
. 10.1088/0957-0233/15/9/025
21.
Williamson
,
D. M.
,
Palmer
,
S. J. P.
,
Proud
,
W. G.
, and
Govier
,
R.
,
2007
, “
Brazilian Disc Testing of a UK PBX Above and Below the Glass Transition Temperature
,”
AIP Conf. Proc.
,
955
(
1
), pp.
803
806
. 10.1063/1.2833246
22.
Idar
,
D. J.
,
Thompson
,
D. G.
,
Gray
,
G. T.
,
Blumenthal
,
W. R.
,
Cady
,
C. M.
,
Peterson
,
P. D.
,
Roemer
,
E. L.
,
Wright
,
W. J.
, and
Jacquez
,
B. J.
,
2002
, “
Influence of Polymer Molecular Weight, Temperature, and Strain Rate on the Mechanical Properties of PBX 9501
,”
AIP Conf. Proc.
,
620
(
1
), pp.
821
824
. 10.1063/1.1483663
23.
Li
,
J.
,
Lu
,
F.
,
Qin
,
J.
,
Chen
,
R.
,
Zhao
,
P.
,
Lan
,
L.
, and
Jing
,
S.
,
2012
, “
Effects of Temperature and Strain Rate on the Dynamic Responses of Three Polymer-Bonded Explosives
,”
J. Strain Anal. Eng. Des.
,
47
(
2
), pp.
104
112
. 10.1177/0309324711428836
24.
Kerschen
,
N. E.
,
Guo
,
Z.
,
Sun
,
T.
,
Claus
,
B.
,
Mares
,
J.
,
Fezzaa
,
K.
, and
Chen
,
W.
,
2017
, “
Visualization of PBX Response to Impact Loading
,”
32nd Technical Conference of the American Society for Composites
,
Purdue University, West Lafayette, IN
,
Oct. 23–25
.
25.
Thompson
,
D. G.
,
Deluca
,
R.
, and
Brown
,
G. W.
,
2012
, “
Time-Temperature Analysis, Tension and Compression in PBXs
,”
J. Energ. Mater.
,
30
(
4
), pp.
299
323
. 10.1080/07370652.2011.569831
26.
Chen
,
P.
,
Huang
,
F.
, and
Ding
,
Y.
,
2007
, “
Microstructure, Deformation and Failure of Polymer Bonded Explosives
,”
J. Mater. Sci.
,
42
(
13
), pp.
5272
5280
. 10.1007/s10853-006-0387-y
27.
Hudspeth
,
M.
,
Sun
,
T.
,
Parab
,
N.
,
Guo
,
Z.
,
Fezzaa
,
K.
,
Luo
,
S.
, and
Chen
,
W.
,
2015
, “
Simultaneous X-ray Diffraction and Phase-Contrast Imaging for Investigating Material Deformation Mechanisms During High-Rate Loading
,”
J. Synchrotron Radiat.
,
22
(
1
), pp.
49
58
. 10.1107/S1600577514022747
28.
Parab
,
N. D.
,
Roberts
,
Z. A.
,
Harr
,
M. H.
,
Mares
,
J. O.
,
Casey
,
A. D.
,
Gunduz
,
I. E.
,
Hudspeth
,
M.
,
Claus
,
B.
,
Sun
,
T.
,
Fezzaa
,
K.
,
Son
,
S. F.
, and
Chen
,
W. W.
,
2016
, “
High Speed X-Ray Phase Contrast Imaging of Energetic Composites Under Dynamic Compression
,”
Appl. Phys. Lett.
,
109
(
13
), p.
131903
. 10.1063/1.4963137
29.
Yang
,
B.-h.
,
Wu
,
A.-x.
,
Miao
,
X.-x.
, and
Liu
,
J.-z.
,
2014
, “
3D Characterization and Analysis of Pore Structure of Packed Ore Particle Beds Based on Computed Tomography Images
,”
Trans. Nonferrous Met. Soc. China
,
24
(
3
), pp.
833
838
. 10.1016/S1003-6326(14)63131-9
30.
Al-Raoush
,
R.
, and
Papadopoulos
,
A.
,
2010
, “
Representative Elementary Volume Analysis of Porous Media Using X-Ray Computed Tomography
,”
Powder Technol.
,
200
(
1–2
), pp.
69
77
. 10.1016/j.powtec.2010.02.011
31.
Koloushani
,
M.
,
Hedayati
,
R.
,
Sadighi
,
M.
, and
Mohammadi-Aghdam
,
M.
,
2018
, “
CT-based Micro-Mechanical Approach to Predict Response of Closed-Cell Porous Biomaterials to Low-Velocity Impact
,”
J. Imaging
,
4
(
3
), p.
49
. 10.3390/jimaging4030049
32.
Mukunoki
,
T.
,
Miyata
,
Y.
,
Mikami
,
K.
, and
Shiota
,
E.
,
2016
, “
X-Ray CT Analysis of Pore Structure in Sand
,”
Solid Earth
,
7
(
3
), pp.
929
942
. 10.5194/se-7-929-2016
33.
Yu
,
X.
,
Peng
,
G.
, and
Lu
,
S.
,
2018
, “
Characterizing Aggregate Pore Structure by X-Ray Micro-Computed Tomography and a Network Model
,”
Soil Sci. Soc. Am. J.
,
82
(
4
), pp.
744
756
. 10.2136/sssaj2017.11.0385
34.
He
,
Y.-j.
,
Mote
,
J.
, and
Lange
,
D. A.
,
2013
, “
Characterization of Microstructure Evolution of Cement Paste by Micro Computed Tomography
,”
J. Cent. South Univ.
,
20
(
4
), pp.
1115
1121
. 10.1007/s11771-013-1592-x
35.
Yermukhambetova
,
A.
,
Tan
,
C.
,
Daemi
,
S. R.
,
Bakenov
,
Z.
,
Darr
,
J. A.
,
Brett
,
D. J. L.
, and
Shearing
,
P. R.
,
2016
, “
Exploring 3D Microstructural Evolution in Li-Sulfur Battery Electrodes Using In-Situ X-Ray Tomography
,”
Sci. Rep.
,
6
(
1
), p.
35291
. 10.1038/srep35291
36.
Manner
,
V. W.
,
Yeager
,
J. D.
,
Patterson
,
B. M.
,
Walters
,
D. J.
,
Stull
,
J. A.
,
Cordes
,
N. L.
,
Luscher
,
D. J.
,
Henderson
,
K. C.
,
Schmalzer
,
A. M.
, and
Tappan
,
B. C.
,
2017
, “
In Situ Imaging During Compression of Plastic Bonded Explosives for Damage Modeling
,”
Materials
,
10
(
6
), p.
638
. 10.3390/ma10060638
37.
Chen
,
L.
,
Han
,
D.
,
Bai
,
S.-L.
,
Zhao
,
F.
, and
Chen
,
J.-K.
,
2017
, “
Compressive Behavior and Damage Evaluation of a PBX Substitute Material
,”
Mech. Adv. Mater. Struct.
,
24
(
9
), pp.
737
744
. 10.1080/15376494.2016.1196779
38.
Bruck
,
H. A.
,
McNeill
,
S. R.
,
Sutton
,
M. A.
, and
Peters
,
W. H.
,
1989
, “
Digital Image Correlation Using Newton-Raphson Method of Partial Differential Correction
,”
Exp. Mech.
,
29
(
3
), pp.
261
267
. 10.1007/BF02321405
39.
Bay
,
B. K.
,
Smith
,
T. S.
,
Fyhrie
,
D. P.
, and
Saad
,
M.
,
1999
, “
Digital Volume Correlation: Three-Dimensional Strain Mapping Using X-Ray Tomography
,”
Exp. Mech.
,
39
(
3
), pp.
217
226
. 10.1007/BF02323555
40.
Hu
,
Z.
,
Luo
,
H.
,
Bardenhagen
,
S. G.
,
Siviour
,
C. R.
,
Armstrong
,
R. W.
, and
Lu
,
H.
,
2015
, “
Internal Deformation Measurement of Polymer Bonded Sugar in Compression by Digital Volume Correlation of In-Situ Tomography
,”
Exp. Mech.
,
55
(
1
), pp.
289
300
. 10.1007/s11340-014-9856-4
41.
Hu
,
Z.
,
Luo
,
H.
,
Du
,
Y.
, and
Lu
,
H.
,
2016
, “Correlation of Microscale Deformations to Macroscopic Mechanical Behavior Using Incremental Digital Volume Correlation of In-Situ Tomography,”
Advancement of Optical Methods in Experimental Mechanics
, Vol.
3
,
H.
Jin
,
S.
Yoshida
,
L.
Lamberti
, and
M.-T.
Lin
, eds.,
Springer
,
Cham, Switzerland
, pp.
125
137
.
42.
Goldrein
,
H. T.
,
Rae
,
P. J.
,
Palmer
,
S. J. P.
, and
Lewis
,
A. L.
,
2001
, “Ageing Effects on the Mechanical Properties of a Polymer Bonded Explosive,”
Ageing Studies and Lifetime Extension of Materials
,
L.
Mallinson
, ed.,
Springer
,
Boston, MA
, pp.
129
136
.
43.
Range
,
A. R.
,
McMindes
,
N. R.
,
Tucker
,
J. B.
, and
Rhoads
,
J. F.
,
2018
, “The Influence of Formulation Variation and Thermal Boundary Conditions on the Near-Resonant Thermomechanics of Mock Explosives,”
Fracture, Fatigue, Failure and Damage Evolution
, Vol.
7
,
J.
Carroll
,
S.
Xia
,
A.
Beese
,
R.
Berke
, and
G.
Pataky
, eds.,
Conference Proceedings of the Society for Experimental Mechanics Series, Springer
,
Cham, Switzerland
, pp.
47
55
.
44.
Lochert
,
I. J.
,
Dexter
,
R. M.
, and
Hamshere
,
B. L.
,
2002
, “
Evaluation of Australian RDX in PBXN-109
,”
Tech. Rep. DSTO-TN-0440, Defence Science and Technology Organisation, Edinburgh (Australia) Weapons Systems DIV
.
45.
Rumchik
,
C. G.
, and
Jordan
,
J. L.
,
2007
, “
Effect of Aluminum Particle Size on the High Strain Rate Properties of Pressed Aluminized Explosives
,”
AIP Conf. Proc.
,
955
(
1
), pp.
795
798
. 10.1063/1.2833243
46.
Tang
,
M.-f.
,
Pang
,
H.-y.
,
Lan
,
L.-g.
,
Wen
,
M.-p.
, and
Ming
,
L. I.
,
2016
, “
Constitutive Behavior of RDX-Based PBX with Loading-History and Loading-Rate Effects
,”
Chin. J. Energ. Mater.
,
24
(
9
), pp.
832
837
. 10.11943/j.issn.1006-9941.2016.09.002
47.
Jiang
,
Y.
, and
Sehitoglu
,
H.
,
1994
, “
Multiaxial Cyclic Ratchetting Under Multiple Step Loading
,”
Int. J. Plast.
,
10
(
8
), pp.
849
870
. 10.1016/0749-6419(94)90017-5
48.
Zhang
,
J.
, and
Jiang
,
Y.
,
2004
, “
A Study of Inhomogeneous Plastic Deformation of 1045 Steel
,”
ASME J. Eng. Mater. Technol.
,
126
(
2
), pp.
164
171
. 10.1115/1.1647125
49.
Jiang
,
Y.
, and
Zhang
,
J.
,
2008
, “
Benchmark Experiments and Characteristic Cyclic Plasticity Deformation
,”
Int. J. Plast.
,
24
(
9
), pp.
1481
1515
. 10.1016/j.ijplas.2007.10.003
50.
Paul
,
S. K.
,
Sivaprasad
,
S.
,
Dhar
,
S.
, and
Tarafder
,
S.
,
2011
, “
Key Issues in Cyclic Plastic Deformation: Experimentation
,”
Mech. Mater.
,
43
(
11
), pp.
705
720
. 10.1016/j.mechmat.2011.07.011
51.
Blanchard
,
A. F.
, and
Parkinson
,
D.
,
1952
, “
Breakage of Carbon-Rubber Networks by Applied Stress
,”
Ind. Eng. Chem.
,
44
(
4
), pp.
799
812
. 10.1021/ie50508a034
52.
Houwink
,
R.
,
1956
, “
Slipping of Molecules During the Deformation of Reinforced Rubber
,”
Rubber Chem. Technol.
,
29
(
3
), pp.
888
893
. 10.5254/1.3542602
53.
Kraus
,
G.
,
Childers
,
C. W.
, and
Rollmann
,
K. W.
,
1966
, “
Stress Softening in Carbon Black-Reinforced Vulcanizates. Strain Rate and Temperature Effects
,”
J. Appl. Polym. Sci.
,
10
(
2
), pp.
229
244
. 10.1002/app.1966.070100205
54.
Diani
,
J.
,
Fayolle
,
B.
, and
Gilormini
,
P.
,
2009
, “
A Review on the Mullins Effect
,”
Eur. Polym. J.
,
45
(
3
), pp.
601
612
. 10.1016/j.eurpolymj.2008.11.017
55.
Ravindran
,
S.
,
Gupta
,
V.
,
Tessema
,
A.
, and
Kidane
,
A.
,
2019
, “
Effect of Particle Mass Fraction on the Multiscale Dynamic Failure Behavior of Particulate Polymer Composites
,”
Exp. Mech.
,
59
(
5
), pp.
599
609
. 10.1007/s11340-019-00493-4
56.
Liu
,
B.
,
Huang
,
W.
,
Wang
,
H.
,
Wang
,
M.
, and
Li
,
X.
,
2014
, “
Study on the Load Partition Behaviors of High Particle Content B4C/Al Composites in Compression
,”
J. Compos. Mater.
,
48
(
3
), pp.
355
364
. 10.1177/0021998312472220
57.
Topin
,
V.
,
Delenne
,
J. Y.
,
Radjaı
,
F.
,
Brendel
,
L.
, and
Mabille
,
F.
,
2007
, “
Strength and Failure of Cemented Granular Matter
,”
Eur. Phys. J. E
,
23
(
4
), pp.
413
429
. 10.1140/epje/i2007-10201-9
58.
Scarfe
,
W. C.
, and
Farman
,
A. G.
,
2008
, “
What is Cone-Beam CT and How Does it Work?
,”
Dent. Clin. North Am.
,
52
(
4
), pp.
707
730
. 10.1016/j.cden.2008.05.005
59.
Shapiro
,
L. G.
, and
Stockman
,
G. C.
,
2001
,
Computer Vision
,
Prentice Hall
,
Upper Saddle River, NJ
.
60.
Wellington
,
S. L.
, and
Vinegar
,
H. J.
,
1987
, “
X-Ray Computerized Tomography
,”
J. Pet. Technol.
,
39
(
8
), pp.
885
898
. 10.2118/16983-PA
61.
MATLAB®, Version 9.4.0, The MathWorks Inc., 1984-2018, Natick, MA
.
You do not currently have access to this content.