Abstract

In nature, hair-like whiskers are used to detect surrounding information, such as surface texture and air flow field. The detection requires a comprehensive understanding of the relationship between whisker deformation and the contact force. With a whisker being modeled as a slender beam, the contact problem cannot be solved by small deformation beam theory and thus requires a new mechanical model to build up the relationship between whisker deformation and the contact force. In this work, the contact problem between a whisker and a round obstacle is solved, considering three factors: large deformation of the whisker, size of the obstacle, and frictional effect of the interface. Force and energy histories during the contact are analyzed under two motion modes: translation and rotation. Results show that the rotational mode is preferred in nature, because rotation of a whisker over an obstacle requires less energy for frictional dissipation. In addition, there are two types of detachment during the slip between the whisker and the obstacle. The detachment types are dependent on the whisker’s length and can be explained by the buckling theory of a slender beam.

References

References
1.
Krupa
,
D. J.
,
Matell
,
M. S.
,
Brisben
,
A. J.
,
Oliveira
,
L. M.
, and
Nicolelis
,
M. A. L.
,
2001
, “
Behavioral Properties of the Trigeminal Somatosensory System in Rats Performing Whisker-Dependent Tactile Discriminations
,”
J. Neurosci.
,
21
(
15
), pp.
5752
5763
. 10.1523/JNEUROSCI.21-15-05752.2001
2.
Szwed
,
M.
,
Bagdasarian
,
K.
,
Blumenfeld
,
B.
,
Barak
,
O.
,
Derdikman
,
D.
, and
Ahissar
,
E.
,
2006
, “
Responses of Trigeminal Ganglion Neurons to the Radial Distance of Contact During Active Vibrissal Touch
,”
J. Neurophysiol.
,
95
(
2
), pp.
791
802
. 10.1152/jn.00571.2005
3.
McConney
,
M. E.
,
Schaber
,
C. F.
,
Julian
,
M. D.
,
Eberhardt
,
W. C.
,
Humphrey
,
J. A. C.
,
Barth
,
F. G.
, and
Tsukruk
,
V. V.
,
2009
, “
Surface Force Spectroscopic Point Load Measurements and Viscoelastic Modelling of the Micromechanical Properties of Air Flow Sensitive Hairs of a Spider (Cupiennius Salei)
,”
J. R. Soc. Interface
,
6
(
37
), pp.
681
694
. 10.1098/rsif.2008.0463
4.
Astreinidi Blandin
,
A.
,
Bernardeschi
,
I.
, and
Beccai
,
L.
,
2018
, “
Biomechanics in Soft Mechanical Sensing: From Natural Case Studies to the Artificial World
,”
Biomimetics (Basel)
,
3
(
4
), pp.
1
29
. 10.3390/biomimetics3040032
5.
Seale
,
M.
,
Cummins
,
C.
,
Viola
,
I. M.
,
Mastropaolo
,
E.
, and
Nakayama
,
N.
,
2018
, “
Design Principles of Hair-Like Structures as Biological Machines
,”
J. R. Soc. Interface
,
15
(
142
), p
20180206
. 10.1098/rsif.2018.0206
6.
Solomon
,
J. H.
, and
Hartmann
,
M. J.
,
2006
, “
Biomechanics: Robotic Whiskers Used to Sense Features
,”
Nature
,
443
(
7111
), pp.
525
525
. 10.1038/443525a
7.
Kaneko
,
M.
,
Kanayama
,
N.
, and
Tsuji
,
T.
,
1998
, “
Active Antenna for Contact Sensing
,”
IEEE Trans. Rob. Autom.
,
14
(
2
), pp.
278
291
. 10.1109/70.681246
8.
Ritt
,
J. T.
,
Andermann
,
M. L.
, and
Moore
,
C. I.
,
2008
, “
Embodied Information Processing: Vibrissa Mechanics and Texture Features Shape Micromotions in Actively Sensing Rats
,”
Neuron
,
57
(
4
), pp.
599
613
. 10.1016/j.neuron.2007.12.024
9.
Birdwell
,
J. A.
,
Solomon
,
J. H.
,
Thajchayapong
,
M.
,
Taylor
,
M. A.
,
Cheely
,
M.
,
Towal
,
R. B.
,
Conradt
,
J.
, and
Hartmann
,
M. J. Z.
,
2007
, “
Biomechanical Models for Radial Distance Determination by the Rat Vibrissal System
,”
J. Neurophysiol.
,
98
(
4
), pp.
2439
2455
. 10.1152/jn.00707.2006
10.
Solomon
,
J. H.
, and
Hartmann
,
M. J.
,
2011
, “
Radial Distance Determination in the Rat Vibrissal System and the Effects of Weber's Law
,”
Philos. Trans. R. Soc. Lond. B Biol. Sci.
,
366
(
1581
), pp.
3049
3057
. 10.1098/rstb.2011.0166
11.
Quist
,
B. W.
, and
Hartmann
,
M. J.
,
2012
, “
Mechanical Signals at the Base of a Rat Vibrissa: The Effect of Intrinsic Vibrissa Curvature and Implications for Tactile Exploration
,”
J. Neurophysiol.
,
107
(
9
), pp.
2298
2312
. 10.1152/jn.00372.2011
12.
Vaziri
,
A.
,
Jenks
,
R. A.
,
Boloori
,
A.-R.
, and
Stanley
,
G. B.
,
2007
, “
Flexible Probes for Characterizing Surface Topology: From Biology to Technology
,”
Exp. Mech.
,
47
(
3
), pp.
417
425
. 10.1007/s11340-007-9046-8
13.
Clements
,
T. N.
, and
Rahn
,
C. D.
,
2006
, “
Three-Dimensional Contact Imaging With an Actuated Whisker
,”
IEEE Trans. Rob.
,
22
(
4
), pp.
844
848
. 10.1109/TRO.2006.878950
14.
Hires
,
S. A.
,
Pammer
,
L.
,
Svoboda
,
K.
, and
Golomb
,
D.
,
2013
, “
Tapered Whiskers Are Required for Active Tactile Sensation
,”
Elife
,
2
, p.
e01350
. 10.7554/eLife.01350
15.
Solomon
,
J. H.
, and
Hartmann
,
M.
,
2008
, “
Artificial Whiskers Suitable for Array Implementation: Accounting for Lateral Slip and Surface Friction
,”
IEEE Trans. Rob.
,
24
(
5
), pp.
1157
1167
. 10.1109/TRO.2008.2002562
16.
Maoiléidigh
,
D. Ó.
,
Nicola
,
E. M.
, and
Hudspeth
,
A.
,
2012
, “
The Diverse Effects of Mechanical Loading on Active Hair Bundles
,”
Proc. Natl. Acad. Sci. USA
,
109
(
6
), pp.
1943
1948
. 10.1073/pnas.1120298109
17.
Batista
,
M.
,
2015
, “
Large Deflections of a Beam Subject to Three-Point Bending
,”
Int. J. Non-Linear Mech.
,
69
, pp.
84
92
. 10.1016/j.ijnonlinmec.2014.11.024
18.
Howell
,
L. L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
. 10.1115/1.2826101
19.
Freeman
,
J.
,
1946
, “
LXXXIX. Mathematical Theory of Deflection of Beam
,”
London, Edinburgh, Dublin Philosophical Magazine J. Sci.
,
37
(
275
), pp.
855
862
. 10.1080/14786444608521578
You do not currently have access to this content.