Abstract

Materials like paper, consisting of a network of natural fibers, exposed to variations in moisture, undergo changes in geometrical and mechanical properties. This behavior is particularly important for understanding the hygro-mechanical response of sheets of paper in applications like digital printing. A two-dimensional microstructural model of a fibrous network is therefore developed to upscale the hygro-expansion of individual fibers, through their interaction, to the resulting overall expansion of the network. The fibers are modeled with rectangular shapes and are assumed to be perfectly bonded where they overlap. For realistic networks, the number of bonds is large, and the network is geometrically so complex that discretizing it by conventional, geometry-conforming, finite elements is cumbersome. The combination of a level-set and XFEM formalism enables the use of regular, structured grids in order to model the complex microstructural geometry. In this approach, the fibers are described implicitly by a level-set function. In order to represent the fiber boundaries in the fibrous network, an XFEM discretization is used together with a Heaviside enrichment function. Numerical results demonstrate that the proposed approach successfully captures the hygro-expansive properties of the network with fewer degrees-of-freedom compared to classical FEM, preserving desired accuracy.

References

References
1.
Sabit
,
A.
,
1997
,
Paper Machine Clothing: Key to Paper Making Process
, 1st ed.,
CRC Press
,
Lancaster, PA
.
2.
Larsson
,
P. A.
, and
Wagberg
,
L.
,
2008
, “
Influence of Fibre-Fibre Joint Properties on the Dimensional Stability of Paper
,”
Cellulose
,
15
(
4
), pp.
515
525
. 10.1007/s10570-008-9203-y
3.
Cox
,
H.
,
1952
, “
The Elasticity and Strength of Paper and Other Fibrous Materials
,”
Br. J. Appl. Phys.
,
3
(
3
), pp.
72
79
. 10.1088/0508-3443/3/3/302
4.
Akker
,
J. A. V.
,
1962
, “
Some theoretical considerations on the mechanical properties of fibrous structures
,”
The Formation and Structure of Paper. Technical Section of British Papers and Board Makers Association, 1
, pp.
205
241
.
5.
Ramasubramanian
,
M. K.
, and
Perkins
,
R. W.
,
1988
, “
Computer Simulation of the Uniaxial Elastic-Plastic Behavior of Paper
,”
ASME J. Eng. Mater. Technol.
,
110
(
2
), pp.
117
123
. 10.1115/1.3226018
6.
Schulgasser
,
K.
, and
Page
,
D. H.
,
1988
, “
The Influence of Transverse Fibre Properties on the In-Plane Elastic Behaviour of Paper
,”
Compos. Sci. Technol.
,
32
(
4
), pp.
279
292
. 10.1016/0266-3538(88)90066-8
7.
Starzewski
,
O. M.
, and
Stahl
,
D. C.
,
2000
, “
Random Fiber Networks and Special Elastic Orthotropy of Paper
,”
J. Elast.
,
60
, pp.
131
149
. 10.1023/A:1010844929730
8.
Bronkhorst
,
C. A.
,
2003
, “
Modeling Paper as a Two-Dimensional Elastic-Plastic Stochastic Network
,”
Int. J. Solids Struct.
,
40
(
20
), pp.
5441
5454
. 10.1016/S0020-7683(03)00281-6
9.
Kulachenko
,
A.
, and
Uesaka
,
T.
,
2012
, “
Direct Simulations of Fiber Network Deformation and Failure
,”
Mech. Mater.
,
51
, pp.
1
14
. 10.1016/j.mechmat.2012.03.010
10.
Shahsavari
,
A.
, and
Picu
,
R.
,
2013
, “
Size Effect on Mechanical Behavior of Random Fiber Networks
,”
Int. J. Solids Struct.
,
50
(
20–21
), pp.
3332
3338
. 10.1016/j.ijsolstr.2013.06.004
11.
Dirrenberger
,
J.
,
Forest
,
S.
, and
Jeulin
,
D.
,
2014
, “
Towards Gigantic RVE Sizes for 3D Stochastic Fibrous Networks
,”
Int. J. Solids Struct.
,
51
(
2
), pp.
359
376
. 10.1016/j.ijsolstr.2013.10.011
12.
Nordman
,
L.
,
1958
, “
Laboratory Investigations Into the Dimensional Stability of Paper
,”
Tech. Assoc. Pulp Paper Ind.
,
41
, pp.
23
30
.
13.
Salmen
,
L.
, and
Olsson
,
A. M.
,
2014
, “
Mechanosorptive Creep in Pulp Fibres and Paper
,”
Wood Sci. Technol.
,
48
(
3
), pp.
569
580
. 10.1007/s00226-014-0624-5
14.
Uesaka
,
T.
, and
Qi
,
D.
,
1994
, “
Hygroexpansivity of Paper-Effects of Fibre to Fibre Bonding
,”
J. Pulp Pap. Sci.
,
20
(
6
), pp.
175
179
.
15.
Page
,
D. H.
, and
Tydemann
,
P. A.
,
1961
, “A New Theory of the Shrinkage, Structure and Properties of Paper,”
Transactions of the Symposium held at Oxford
,
F.
Bolam
. ed.,
Technical Section, British Paper and Board Makers’ Association
,
London
, Sept., pp.
397
421
.
16.
Uesaka
,
T.
,
1994
, “
General Formula for Hygroexansion of Paper
,”
J. Mater. Sci.
,
29
(
9
), pp.
2372
2377
. 10.1007/BF00363429
17.
Niskanen
,
K.
,
1998
,
Paper Physics (Papermaking Science and Technology)
, 2nd ed.,
Fapet Oy
,
Jyväskylä, Finland
.
18.
Niskanen
,
K.
,
Kuskowski
,
S. J.
, and
Bronkhorst
,
C. A.
,
1997
, “
Dynamic Hygro-Expansion of Paperboards
,”
Nordic Pulp Paper Res. J.
,
12
(
2
), pp.
103
110
. 10.3183/npprj-1997-12-02-p103-110
19.
Erkkila
,
A.
,
Leppanen
,
T.
,
Ora
,
M.
,
Tuovinen
,
T.
, and
Puurtinen
,
A.
,
2015
, “
Hygroexpansivity of Anisotropic Sheets
,”
Compos. Sci. Technol.
,
30
(
2
), pp.
325
334
. 10.1007/s11390-015-1526-1
20.
Bosco
,
E.
,
Peerlings
,
R. H. J.
, and
Geers
,
M. G. D.
,
2015
, “
Predicting Hygro-Elastic Properties of Paper Sheets Based on an Idealized Model of the Underlying Fibrous Network
,”
Int. J. Solids Struct.
,
56-57
, pp.
43
52
. 10.1016/j.ijsolstr.2014.12.006
21.
Guedes
,
J.
, and
Kikuchi
,
N.
,
1990
, “
Preprocessing and Postprocessing for Materials Based on the Homogenization Method With Adaptive Finite Element Methods
,”
Comput. Methods Appl. Mech. Eng.
,
83
(
2
), pp.
143
198
. 10.1016/0045-7825(90)90148-F
22.
Boutin
,
C.
,
1996
, “
Microstructural Effects in Elastic Composites
,”
Int. J. Solids Struct.
,
33
(
7
), pp.
1023
1051
. 10.1016/0020-7683(95)00089-5
23.
Peerlings
,
R. H. J.
, and
Fleck
,
N. A.
,
2004
, “
Computational Evaluation of Strain Gradient Elasticity Constants
,”
Int. J. Multiscale Comput. Eng.
,
2
(
4
), pp.
599
619
. 10.1615/IntJMultCompEng.v2.i4.60
24.
Bosco
,
E.
,
Peerlings
,
R. H. J.
, and
Geers
,
M. G. D.
,
2017
, “
Asymptotic Homogenization of Hygro-Thermo-Mechanical Properties of Fibrous Networks
,”
Int. J. Solids Struct.
,
115–116
, pp.
180
189
. 10.1016/j.ijsolstr.2017.03.015
25.
Sethian
,
J. A.
,
1999
,
Level Set Methods and Fast Marching Methods
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
26.
Daux
,
C.
,
Moes
,
N.
,
Dolbow
,
J.
,
Sukumar
,
N.
, and
Belytschko
,
T.
,
2000
, “
Arbitrary Branched and Intersecting Cracks With the Extended Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
48
(
12
), pp.
1741
1760
. 10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
27.
Roylance
,
D.
,
1996
,
Mechanics of Materials
, 1st ed.,
Wiley and Sons
,
New York
.
28.
Osher
,
S.
, and
Fedkiw
,
R.
,
2003
,
Level Set Methods and Dynamic Implicit Surfaces
, 1st ed.,
Springer-Verlag
,
New York
.
29.
Sukumar
,
N.
,
Chopp
,
D. L.
,
Moes
,
N.
, and
Belytschko
,
T.
,
2001
, “
Modeling Holes and Inclusions by Level Sets in the Extended Finite-Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
46–47
), pp.
6183
6200
. 10.1016/S0045-7825(01)00215-8
30.
Rivara
,
M. C.
,
1997
, “
New Longest-Edge Algorithms for the Refinement and/or Improvement of Unstructured Triangulations
,”
Int. J. Numer. Methods Eng.
,
40
(
18
), pp.
3313
3324
. 10.1002/(SICI)1097-0207(19970930)40:18<3313::AID-NME214>3.0.CO;2-#
31.
Geuzaine
,
C.
, and
Remacle
,
J.-F.
,
2009
, “
Gmsh: A 3-D Finite Element Mesh Generator With Built-in Pre- and Post-Processing Facilities
,”
Int. J. Numer. Methods Eng.
,
79
(
11
), pp.
1309
1331
. 10.1002/nme.2579
32.
Bosco
,
E.
,
Peerlings
,
R. H. J.
, and
Geers
,
M. G. D.
,
2015
, “
Explaining Irreversible Hygroscopic Strains in Paper: a Multi-Scale Modelling Study on the Role of Fibre Activation and Micro-Compressions
,”
Mech. Mater.
,
91
, pp.
76
94
. 10.1016/j.mechmat.2015.07.009
You do not currently have access to this content.