Abstract

The fixed band gap characteristic of passive phononic crystals (PCs) is possible to limit their applications in engineering. To overcome this shortcoming, inspired by the tunable mechanism of the spider silks, a new class of tunable PCs comprising periodic scatterers and periodic elastomeric matrix are proposed to effectively tune the band gaps and directionality of propagating waves. The orientation and arrangement of hard scatterers are controlled by the deformation of the periodic elastomeric matrix to enhance the tunability of their dynamic responses. According to this idea, PCs with differently shaped and arranged cylindroid scatterers are designed. Through introducing the multiple scatterers into the periodic elastomeric matrix, the scattering coupling effect between them is enhanced. The simulation results indicate that the orientation and arrangement of the scatterers could be altered continuously during deformation. During deformation, the number, position, and width of band gaps can be effectively tuned due to the geometric nonlinearity of the matrix and the rearrangement of multiple scatterers. The transmissibility of finite-sized structures without damping decreases significantly in the frequency ranges of band gaps. However, introducing the damping into the matrix material significantly enhances the ability to suppress elastic wave propagation but makes it difficult to identify the band gaps from the transmittance spectrum. The directionality of wave propagation can be also effectively tuned. In the low-frequency range, such as the first two phase constant surfaces, the phase and group velocity profiles and the anisotropy indexes are calculated and the results indicate that the deformation makes the wave propagation more isotropic. The schemes presented in this paper provide an effective approach to tune the band gaps of the solid/solid PCs and open avenues for the design of tunable PCs.

References

References
1.
Hussein
,
M. I.
,
Hulbert
,
G. M.
, and
Scott
,
R. A.
,
2006
, “
Dispersive Elastodynamics of 1D Banded Materials and Structures: Analysis
,”
J. Sound Vib.
,
289
(
4–5
), pp.
779
806
. 10.1016/j.jsv.2005.02.030
2.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
(
13
), pp.
2022
2025
. 10.1103/PhysRevLett.71.2022
3.
Zhou
,
X.
,
Liu
,
X.
, and
Hu
,
G.
,
2012
, “
Elastic Metamaterials With Local Resonances: An Overview
,”
Theor. Appl. Mech. Lett.
,
2
(
4
), p.
041001
. 10.1063/2.1204101
4.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y. Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
. 10.1126/science.289.5485.1734
5.
Ning
,
S.
,
Yang
,
F.
,
Luo
,
C.
,
Liu
,
Z.
, and
Zhuang
,
Z.
,
2020
, “
Low-Frequency Tunable Locally Resonant Band Gaps in Acoustic Metamaterials Through Large Deformation
,”
Extrem. Mech. Lett.
,
35
, p.
100623
. 10.1016/j.eml.2019.100623
6.
Chen
,
Z.-G.
,
Zhao
,
J.
,
Mei
,
J.
, and
Wu
,
Y.
,
2017
, “
Acoustic Frequency Filter Based on Anisotropic Topological Phononic Crystals
,”
Sci. Rep.
,
7
(
1
), p.
15005
. 10.1038/s41598-017-15409-2
7.
Qiu
,
C.
,
Liu
,
Z.
,
Mei
,
J.
, and
Shi
,
J.
,
2005
, “
Mode-Selecting Acoustic Filter by Using Resonant Tunneling of Two-Dimensional Double Phononic Crystals
,”
Appl. Phys. Lett.
,
87
(
10
), p.
104101
. 10.1063/1.2037853
8.
Zhao
,
S.-D.
,
Chen
,
A.-L.
,
Wang
,
Y.-S.
, and
Zhang
,
C.
,
2018
, “
Continuously Tunable Acoustic Metasurface for Transmitted Wavefront Modulation
,”
Phys. Rev. Appl.
,
10
(
5
), p.
054066
. 10.1103/PhysRevApplied.10.054066
9.
Kaina
,
N.
,
Lemoult
,
F.
,
Fink
,
M.
, and
Lerosey
,
G.
,
2015
, “
Negative Refractive Index and Acoustic Superlens From Multiple Scattering in Single Negative Metamaterials
,”
Nature
,
525
(
7567
), pp.
77
81
. 10.1038/nature14678
10.
Dong
,
H.-W.
,
Zhao
,
S.-D.
,
Wang
,
Y.-S.
, and
Zhang
,
C.
,
2018
, “
Broadband Single-Phase Hyperbolic Elastic Metamaterials for Super-Resolution Imaging
,”
Sci. Rep.
,
8
(
1
), p.
2247
. 10.1038/s41598-018-20579-8
11.
Wang
,
Y.-F.
,
Wang
,
T.-T.
,
Liang
,
J.-W.
,
Wang
,
Y.-S.
, and
Laude
,
V.
,
2018
, “
Channeled Spectrum in the Transmission of Phononic Crystal Waveguides
,”
J. Sound Vib.
,
437
, pp.
410
421
. 10.1016/j.jsv.2018.09.030
12.
Wang
,
Y.-F.
,
Wang
,
T.-T.
,
Liu
,
J.-P.
,
Wang
,
Y.-S.
, and
Laude
,
V.
,
2018
, “
Guiding and Splitting Lamb Waves in Coupled-Resonator Elastic Waveguides
,”
Compos. Struct.
,
206
, pp.
588
593
. 10.1016/j.compstruct.2018.08.088
13.
Casadei
,
F.
,
Delpero
,
T.
,
Bergamini
,
A.
,
Ermanni
,
P.
, and
Ruzzene
,
M.
,
2012
, “
Piezoelectric Resonator Arrays for Tunable Acoustic Waveguides and Metamaterials
,”
J. Appl. Phys.
,
112
(
6
), p.
064902
. 10.1063/1.4752468
14.
Vasseur
,
J. O.
,
Matar
,
O. B.
,
Robillard
,
J. F.
,
Hladky-Hennion
,
A.-C.
, and
Deymier
,
P. A.
,
2011
, “
Band Structures Tunability of Bulk 2D Phononic Crystals Made of Magneto-Elastic Materials
,”
AIP Adv.
,
1
(
4
), p.
041904
. 10.1063/1.3676172
15.
Oudich
,
M.
,
Assouar
,
M. B.
, and
Hou
,
Z.
,
2010
, “
Propagation of Acoustic Waves and Waveguiding in a Two-Dimensional Locally Resonant Phononic Crystal Plate
,”
Appl. Phys. Lett.
,
97
(
19
), p.
193503
. 10.1063/1.3513218
16.
Ruzzene
,
M.
,
Scarpa
,
F.
, and
Soranna
,
F.
,
2003
, “
Wave Beaming Effects in Two-Dimensional Cellular Structures
,”
Smart Mater. Struct.
,
12
(
3
), pp.
363
372
. 10.1088/0964-1726/12/3/307
17.
Xiao
,
Y.
,
Wen
,
J.
,
Yu
,
D.
, and
Wen
,
X.
,
2013
, “
Flexural Wave Propagation in Beams With Periodically Attached Vibration Absorbers: Band-Gap Behavior and Band Formation Mechanisms
,”
J. Sound Vib.
,
332
(
4
), pp.
867
893
. 10.1016/j.jsv.2012.09.035
18.
Casadei
,
F.
,
Beck
,
B. S.
,
Cunefare
,
K. A.
, and
Ruzzene
,
M.
,
2012
, “
Vibration Control of Plates Through Hybrid Configurations of Periodic Piezoelectric Shunts
,”
J. Intell. Mater. Syst. Struct.
,
23
(
10
), pp.
1169
1177
. 10.1177/1045389X12443014
19.
Yu
,
D.
,
Wen
,
J.
,
Zhao
,
H.
,
Liu
,
Y.
, and
Wen
,
X.
,
2008
, “
Vibration Reduction by Using the Idea of Phononic Crystals in a Pipe-Conveying Fluid
,”
J. Sound Vib.
,
318
(
1–2
), pp.
193
205
. 10.1016/j.jsv.2008.04.009
20.
Zhang
,
H.
,
Wen
,
J.
,
Xiao
,
Y.
,
Wang
,
G.
, and
Wen
,
X.
,
2015
, “
Sound Transmission Loss of Metamaterial Thin Plates With Periodic Subwavelength Arrays of Shunted Piezoelectric Patches
,”
J. Sound Vib.
,
343
, pp.
104
120
. 10.1016/j.jsv.2015.01.019
21.
Xiao
,
Y.
,
Wen
,
J.
, and
Wen
,
X.
,
2012
, “
Sound Transmission Loss of Metamaterial-Based Thin Plates With Multiple Subwavelength Arrays of Attached Resonators
,”
J. Sound Vib.
,
331
(
25
), pp.
5408
5423
. 10.1016/j.jsv.2012.07.016
22.
Wang
,
Y.-F.
,
Wang
,
Y.-Z.
,
Wu
,
B.
,
Chen
,
W.
, and
Wang
,
Y.-S.
,
2020
, “
Tunable and Active Phononic Crystals and Metamaterials
,”
ASME Appl. Mech. Rev.
,
72
(
4
), p.
040801
. (35 pages). 10.1115/1.4046222
23.
Jim
,
K. L.
,
Leung
,
C. W.
,
Lau
,
S. T.
,
Choy
,
S. H.
, and
Chan
,
H. L. W.
,
2009
, “
Thermal Tuning of Phononic Bandstructure in Ferroelectric Ceramic/Epoxy Phononic Crystal
,”
Appl. Phys. Lett.
,
94
(
19
), p.
193501
. 10.1063/1.3136752
24.
Huang
,
Z.-G.
, and
Wu
,
T.-T.
,
2005
, “
Temperature Effect on the Bandgaps of Surface and Bulk Acoustic Waves in Two-Dimensional Phononic Crystals
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
(
3
), pp.
365
370
. 10.1109/TUFFC.2005.1417258
25.
Xu
,
J.
, and
Tang
,
J.
,
2017
, “
Tunable Prism Based on Piezoelectric Metamaterial for Acoustic Beam Steering
,”
Appl. Phys. Lett.
,
110
(
18
), p.
181902
. 10.1063/1.4982717
26.
Zhu
,
R.
,
Chen
,
Y. Y.
,
Barnhart
,
M. V.
,
Hu
,
G. K.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2016
, “
Experimental Study of an Adaptive Elastic Metamaterial Controlled by Electric Circuits
,”
Appl. Phys. Lett.
,
108
(
1
), p.
011905
. 10.1063/1.4939546
27.
Sun
,
Y.
,
Li
,
Z.
,
Huang
,
A.
, and
Li
,
Q.
,
2015
, “
Semi-Active Control of Piezoelectric Coating’s Underwater Sound Absorption by Combining Design of the Shunt Impedances
,”
J. Sound Vib.
,
355
, pp.
19
38
. 10.1016/j.jsv.2015.06.036
28.
Zhang
,
S.
,
Shi
,
Y.
, and
Gao
,
Y.
,
2017
, “
Tunability of Band Structures in a Two-Dimensional Magnetostrictive Phononic Crystal Plate With Stress and Magnetic Loadings
,”
Phys. Lett. A
,
381
(
12
), pp.
1055
1066
. 10.1016/j.physleta.2017.01.044
29.
Bou Matar
,
O.
,
Robillard
,
J. F.
,
Vasseur
,
J. O.
,
Hladky-Hennion
,
A.-C.
,
Deymier
,
P. A.
,
Pernod
,
P.
, and
Preobrazhensky
,
V.
,
2012
, “
Band Gap Tunability of Magneto-Elastic Phononic Crystal
,”
J. Appl. Phys.
,
111
(
5
), p.
054901
. 10.1063/1.3687928
30.
Wu
,
B.
,
Zhou
,
W.
,
Bao
,
R.
, and
Chen
,
W.
,
2018
, “
Tuning Elastic Waves in Soft Phononic Crystal Cylinders Via Large Deformation and Electromechanical Coupling
,”
ASME J. Appl. Mech.
,
85
(
3
), p.
031004
. (16 pages). 10.1115/1.4038770
31.
Zhu
,
Z.
,
Deng
,
Z.
,
Huang
,
B.
, and
Du
,
J.
,
2019
, “
Elastic Wave Propagation in Triangular Chiral Lattices: Geometric Frustration Behavior of Standing Wave Modes
,”
Int. J. Solids Struct.
,
158
, pp.
40
51
. 10.1016/j.ijsolstr.2018.08.026
32.
Zhou
,
W.
,
Wu
,
B.
,
Muhammad
,
D.
,
Huang
,
G. Q.
,
,
C.
, and
Chen
,
W.
,
2018
, “
Actively Tunable Transverse Waves in Soft Membrane-Type Acoustic Metamaterials
,”
J. Appl. Phys.
,
123
(
16
), p.
165304
. 10.1063/1.5015979
33.
Wang
,
P.
,
Shim
,
J.
, and
Bertoldi
,
K.
,
2013
, “
Effects of Geometric and Material Nonlinearities on Tunable Band Gaps and Low-Frequency Directionality of Phononic Crystals
,”
Phys. Rev. B
,
88
(
1
), p.
014304
. 10.1103/PhysRevB.88.014304
34.
Shim
,
J.
,
Wang
,
P.
, and
Bertoldi
,
K.
,
2015
, “
Harnessing Instability-Induced Pattern Transformation to Design Tunable Phononic Crystals
,”
Int. J. Solids Struct.
,
58
, pp.
52
61
. 10.1016/j.ijsolstr.2014.12.018
35.
Shan
,
S.
,
Kang
,
S. H.
,
Wang
,
P.
,
Qu
,
C.
,
Shian
,
S.
,
Chen
,
E. R.
, and
Bertoldi
,
K.
,
2014
, “
Harnessing Multiple Folding Mechanisms in Soft Periodic Structures for Tunable Control of Elastic Waves
,”
Adv. Funct. Mater.
,
24
(
31
), pp.
4935
4942
. 10.1002/adfm.201400665
36.
Bertoldi
,
K.
, and
Boyce
,
M. C.
,
2008
, “
Mechanically Triggered Transformations of Phononic Band Gaps in Periodic Elastomeric Structures
,”
Phys. Rev. B
,
77
(
5
), p.
052105
. 10.1103/PhysRevB.77.052105
37.
Bertoldi
,
K.
, and
Boyce
,
M. C.
,
2008
, “
Wave Propagation and Instabilities in Monolithic and Periodically Structured Elastomeric Materials Undergoing Large Deformations
,”
Phys. Rev. B
,
78
(
18
), p.
184107
. 10.1103/PhysRevB.78.184107
38.
Nguyen
,
B. H.
,
Zhuang
,
X.
,
Park
,
H. S.
, and
Rabczuk
,
T.
,
2019
, “
Tunable Topological Bandgaps and Frequencies in a Pre-Stressed Soft Phononic Crystal
,”
J. Appl. Phys.
,
125
(
9
), p.
095106
. 10.1063/1.5066088
39.
Blackledge
,
T. A.
,
Boutry
,
C.
,
Wong
,
S.-C.
,
Baji
,
A.
,
Dhinojwala
,
A.
,
Sahni
,
V.
, and
Agnarsson
,
I.
,
2009
, “
How Super Is Supercontraction? Persistent Versus Cyclic Responses to Humidity in Spider Dragline Silk
,”
J. Exp. Biol.
,
212
(
13
), pp.
1981
1989
. 10.1242/jeb.028944
40.
Dong
,
H.
,
Wu
,
F.
,
Zhong
,
H.
,
Zhang
,
X.
, and
Yao
,
Y.
,
2010
, “
Effects of Asymmetrical Rotated Rectangular Basis on the Acoustic Band Gap in Two-Dimensional Acoustic Crystals: The Bands Are Twisted
,”
J. Phys. D Appl. Phys.
,
43
(
10
), p.
105404
. 10.1088/0022-3727/43/10/105404
41.
Wu
,
L. Y.
, and
Chen
,
L. W.
,
2007
, “
The Dispersion Characteristics of Sonic Crystals Consisting of Elliptic Cylinders
,”
J. Phys. D Appl. Phys.
,
40
(
23
), pp.
7579
7583
. 10.1088/0022-3727/40/23/051
42.
Hou
,
Z.
,
Liu
,
J.
,
Kuang
,
W.
,
Liu
,
Y.
, and
Wu
,
S.
,
2007
, “
Sonic Crystal With Open Resonant Cavities
,”
Phys. Rev. E
,
75
(
2
), p.
026608
. 10.1103/PhysRevE.75.026608
43.
Zhong
,
L.
,
Wu
,
F.
,
Zhang
,
X.
,
Zhong
,
H.
, and
Zhong
,
S.
,
2005
, “
Effects of Orientation and Symmetry of Rods on the Complete Acoustic Band Gap in Two-Dimensional Periodic Solid/Gas Systems
,”
Phys. Lett. Sect. A Gen. At. Solid State Phys.
,
339
(
1–2
), pp.
164
170
. 10.1016/j.physleta.2005.03.025
44.
Wu
,
F.
,
Liu
,
Z.
, and
Liu
,
Y.
,
2002
, “
Acoustic Band Gaps Created by Rotating Square Rods in a Two-Dimensional Lattice
,”
Phys. Rev. E
,
66
(
4
), p.
046628
. 10.1103/PhysRevE.66.046628
45.
Goffaux
,
C.
, and
Vigneron
,
J. P.
,
2001
, “
Theoretical Study of a Tunable Phononic Band Gap System
,”
Phys. Rev. B
,
64
(
7
), p.
075118
. 10.1103/PhysRevB.64.075118
46.
Liu
,
Z.
,
Zhang
,
Z.
, and
Ritchie
,
R. O.
,
2018
, “
On the Materials Science of Nature’s Arms Race
,”
Adv. Mater.
,
30
(
32
), p.
1705220
. 10.1002/adma.201705220
47.
Krushynska
,
A. O.
,
Bosia
,
F.
,
Miniaci
,
M.
, and
Pugno
,
N. M.
,
2017
, “
Spider Web-Structured Labyrinthine Acoustic Metamaterials for Low-Frequency Sound Control
,”
New J. Phys.
,
19
(
10
), p.
105001
. 10.1088/1367-2630/aa83f3
48.
Zheng
,
B.
, and
Xu
,
J.
,
2017
, “
Mechanical Logic Switches Based on DNA-Inspired Acoustic Metamaterials With Ultrabroad Low-Frequency Band Gaps
,”
J. Phys. D Appl. Phys.
,
50
(
46
), p.
465601
. 10.1088/1361-6463/aa8b08
49.
Miniaci
,
M.
,
Krushynska
,
A.
,
Movchan
,
A. B.
,
Bosia
,
F.
, and
Pugno
,
N. M.
,
2016
, “
Spider Web-Inspired Acoustic Metamaterials
,”
Appl. Phys. Lett.
,
109
(
7
), p.
071905
. 10.1063/1.4961307
50.
Chen
,
Y.
, and
Wang
,
L.
,
2016
, “
Bio-Inspired Heterogeneous Composites for Broadband Vibration Mitigation
,”
Sci. Rep.
,
5
(
1
), p.
17865
. 10.1038/srep17865
51.
Chen
,
Y.
, and
Wang
,
L.
,
2014
, “
Tunable Band Gaps in Bio-Inspired Periodic Composites With Nacre-Like Microstructure
,”
J. Appl. Phys.
,
116
(
6
), p.
063506
. 10.1063/1.4892624
52.
Zimmermann
,
E. A.
,
Gludovatz
,
B.
,
Schaible
,
E.
,
Dave
,
N. K. N.
,
Yang
,
W.
,
Meyers
,
M. A.
, and
Ritchie
,
R. O.
,
2013
, “
Mechanical Adaptability of the Bouligand-Type Structure in Natural Dermal Armour
,”
Nat. Commun.
,
4
(
1
), p.
2634
. 10.1038/ncomms3634
53.
Gosline
,
J. M.
,
Guerette
,
P. A.
,
Ortlepp
,
C. S.
, and
Savage
,
K. N.
,
1999
, “
The Mechanical Design of Spider Silks: From Fibroin Sequence to Mechanical Function
,”
J. Exp. Biol.
,
202
(
23
), pp.
3295
3303
.
54.
Zhao
,
Y.
,
Hien
,
K. T. T.
,
Mizutani
,
G.
, and
Rutt
,
H. N.
,
2017
, “
Second-Order Nonlinear Optical Microscopy of Spider Silk
,”
Appl. Phys. B
,
123
(
6
), p.
188
. 10.1007/s00340-017-6766-z
55.
Elices
,
M.
,
Plaza
,
G. R.
,
Pérez-Rigueiro
,
J.
, and
Guinea
,
G. V.
,
2011
, “
The Hidden Link Between Supercontraction and Mechanical Behavior of Spider Silks
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
5
), pp.
658
669
. 10.1016/j.jmbbm.2010.09.008
56.
Schneider
,
D.
,
Gomopoulos
,
N.
,
Koh
,
C. Y.
,
Papadopoulos
,
P.
,
Kremer
,
F.
,
Thomas
,
E. L.
, and
Fytas
,
G.
,
2016
, “
Nonlinear Control of High-Frequency Phonons in Spider Silk
,”
Nat. Mater.
,
15
(
10
), pp.
1079
1083
. 10.1038/nmat4697
57.
Bertoldi
,
K.
,
Boyce
,
M. C.
,
Deschanel
,
S.
,
Prange
,
S. M.
, and
Mullin
,
T.
,
2008
, “
Mechanics of Deformation-Triggered Pattern Transformations and Superelastic Behavior in Periodic Elastomeric Structures
,”
J. Mech. Phys. Solids
,
56
(
8
), pp.
2642
2668
. 10.1016/j.jmps.2008.03.006
58.
Li
,
J.
,
Wang
,
Y.
,
Chen
,
W.
,
Wang
,
Y.-S.
, and
Bao
,
R.
,
2019
, “
Harnessing Inclusions to Tune Post-Buckling Deformation and Bandgaps of Soft Porous Periodic Structures
,”
J. Sound Vib.
,
459
, p.
114848
. 10.1016/j.jsv.2019.114848
59.
Zhang
,
S.
,
Xia
,
C.
, and
Fang
,
N.
,
2011
, “
Broadband Acoustic Cloak for Ultrasound Waves
,”
Phys. Rev. Lett.
,
106
(
2
), p.
024301
. 10.1103/PhysRevLett.106.024301
60.
Hussein
,
M. I.
, and
Frazier
,
M. J.
,
2013
, “
Metadamping: An Emergent Phenomenon in Dissipative Metamaterials
,”
J. Sound Vib.
,
332
(
20
), pp.
4767
4774
. 10.1016/j.jsv.2013.04.041
61.
Abaqus
,
S.
,
Fallis
,
A. D. S.
, and
Techniques
,
D.
,
2014
, “
Abaqus Analysis User’s Guide (6.14)
,”
Abaqus 6.12, Dassault Systemes Simulia Corp., Providence, RI
.
62.
Gao
,
N.
,
Li
,
J.
,
Bao
,
R.
, and
Chen
,
W.
,
2019
, “
Harnessing Uniaxial Tension to Tune Poisson’s Ratio and Wave Propagation in Soft Porous Phononic Crystals: An Experimental Study
,”
Soft Matter
,
15
(
14
), pp.
2921
2927
. 10.1039/C8SM02468E
63.
Kuang
,
W.
,
Hou
,
Z.
, and
Liu
,
Y.
,
2004
, “
The Effects of Shapes and Symmetries of Scatterers on the Phononic Band Gap in 2D Phononic Crystals
,”
Phys. Lett. A
,
332
(
5–6
), pp.
481
490
. 10.1016/j.physleta.2004.10.009
64.
Casadei
,
F.
, and
Rimoli
,
J. J.
,
2013
, “
Anisotropy-Induced Broadband Stress Wave Steering in Periodic Lattices
,”
Int. J. Solids Struct.
,
50
(
9
), pp.
1402
1414
. 10.1016/j.ijsolstr.2013.01.015
65.
Trainiti
,
G.
,
Rimoli
,
J. J.
, and
Ruzzene
,
M.
,
2016
, “
Wave Propagation in Undulated Structural Lattices
,”
Int. J. Solids Struct.
,
97–98
, pp.
431
444
. 10.1016/j.ijsolstr.2016.07.006
You do not currently have access to this content.