Abstract

Phononic crystals composed of delicately designed periodic units are used to control spatial and spectral properties of acoustic or elastic waves. The ability to manipulate transmitting waves in a real-time dynamic manner provides a new concept in programable phononic crystals and metamaterials. In this study, the mechanical waves and bandgaps in a two-dimensional spring-mass array loaded by high-frequency parametric excitation have been investigated by both analytical and numerical methods. It is found that the high-frequency parametric excitation provides an equivalent additional stiffness which leads to low-frequency bandgaps. By tuning the parametric excitation, the versatility of such a dynamic modulating technique has been presented. The waveguide structure has also been designed and studied by non-uniformly distributed parametric excitations.

References

1.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
,
1993
, “
Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. Lett.
,
71
(
13
), pp.
2022
2025
. 10.1103/PhysRevLett.71.2022
2.
Peng
,
H.
,
Frank Pai
,
P.
, and
Deng
,
H. G.
,
2015
, “
Acoustic Multi-Stopband Metamaterial Plates Design for Broadband Elastic Wave Absorption and Vibration Suppression
,”
Int. J. Mech. Sci.
,
103
, pp.
104
114
. 10.1016/j.ijmecsci.2015.08.024
3.
Zouari
,
S.
,
Brocail
,
J.
, and
Génevaux
,
J. M.
,
2018
, “
Flexural Wave Band Gaps in Metamaterial Plates: A Numerical and Experimental Study From Infinite to Finite Models
,”
J. Sound Vib.
,
435
, pp.
246
263
. 10.1016/j.jsv.2018.07.030
4.
Kushwaha
,
M. S.
,
1997
, “
Stop-Bands for Periodic Metallic Rods: Sculptures That Can Filter the Noise
,”
Appl. Phys. Lett.
,
70
(
24
), pp.
3218
3220
. 10.1063/1.119130
5.
Chen
,
Q.
, and
Elbanna
,
A.
,
2016
, “
Modulating Elastic Band Gap Structure in Layered Soft Composites Using Sacrificial Interfaces
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111009
. 10.1115/1.4034537
6.
Che
,
K.
,
Yuan
,
C.
,
Wu
,
J.
,
Jerry Qi
,
H.
, and
Meaud
,
J.
,
2016
, “
Three-Dimensional-Printed Multistable Mechanical Metamaterials With a Deterministic Deformation Sequence
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011004
. 10.1115/1.4034706
7.
Bilal
,
O. R.
,
Foehr
,
A.
, and
Daraio
,
C.
,
2017
, “
Bistable Metamaterial for Switching and Cascading Elastic Vibrations
,”
Proc. Natl. Acad. Sci. USA
,
114
(
18
), pp.
4603
4606
. 10.1073/pnas.1618314114
8.
Ganesh
,
R.
, and
Gonella
,
S.
,
2017
, “
Nonlinear Waves in Lattice Materials: Adaptively Augmented Directivity and Functionality Enhancement by Modal Mixing
,”
J. Mech. Phys. Solids
,
99
, pp.
272
288
. 10.1016/j.jmps.2016.11.001
9.
Su
,
X.-L.
,
Gao
,
Y.-W.
, and
Zhou
,
Y.-H.
,
2012
, “
The Influence of Material Properties on the Elastic Band Structures of One-Dimensional Functionally Graded Phononic Crystals
,”
J. Appl. Phys.
,
112
(
12
), p.
123503
. 10.1063/1.4768934
10.
Huang
,
Y.
,
Shen
,
X. D.
,
Zhang
,
C. L.
, and
Chen
,
W. Q.
,
2014
, “
Mechanically Tunable Band Gaps in Compressible Soft Phononic Laminated Composites With Finite Deformation
,”
Phys. Lett. A
,
378
(
30–31
), pp.
2285
2289
. 10.1016/j.physleta.2014.05.032
11.
Feng
,
R.
, and
Liu
,
K.
,
2012
, “
Tuning the Band-Gap of Phononic Crystals With an Initial Stress
,”
Physica B
,
407
(
12
), pp.
2032
2036
. 10.1016/j.physb.2012.01.135
12.
Aly
,
A. H.
, and
Mehaney
,
A.
,
2015
, “
Modulation of the Band Gaps of Phononic Crystals With Thermal Effects
,”
Int. J. Thermophys.
,
36
(
10–11
), pp.
2967
2984
. 10.1007/s10765-015-1952-x
13.
Bayat
,
A.
, and
Gordaninejad
,
F.
,
2015
, “
Dynamic Response of a Tunable Phononic Crystal Under Applied Mechanical and Magnetic Loadings
,”
Smart Mater. Struct.
,
24
(
6
), p.
065027
. 10.1088/0964-1726/24/6/065027
14.
Qian
,
W.
,
Yu
,
Z.
,
Wang
,
X.
,
Lai
,
Y.
, and
Yellen
,
B. B.
,
2016
, “
Elastic Metamaterial Beam With Remotely Tunable Stiffness
,”
J. Appl. Phys.
,
119
(
5
), p.
055102
. 10.1063/1.4941273
15.
Moiseyenko
,
R. P.
, and
Laude
,
V.
,
2011
, “
Material Loss Influence on the Complex Band Structure and Group Velocity in Phononic Crystals
,”
Phys. Rev. B
,
83
(
6
), p.
064301
. 10.1103/PhysRevB.83.064301
16.
Frazier
,
M. J.
, and
Hussein
,
M. I.
,
2016
, “
Generalized Bloch’s Theorem for Viscous Metamaterials: Dispersion and Effective Properties Based on Frequencies and Wavenumbers That Are Simultaneously Complex
,”
C. R. Phys.
,
17
(
5
), pp.
565
577
. 10.1016/j.crhy.2016.02.009
17.
Robillard
,
J. F.
,
Matar
,
O. B.
,
Vasseur
,
J. O.
,
Deymier
,
P. A.
,
Stippinger
,
M.
,
Hladky-Hennion
,
A. C.
,
Pennec
,
Y.
, and
Djafari-Rouhani
,
B.
,
2009
, “
Tunable Magnetoelastic Phononic Crystals
,”
Appl. Phys. Lett.
,
95
(
12
), p.
124104
. 10.1063/1.3236537
18.
Piliposyan
,
D. G.
,
Ghazaryan
,
K. B.
, and
Piliposian
,
G. T.
,
2015
, “
Magneto-Electro-Elastic Polariton Coupling in a Periodic Structure
,”
J. Phys. D: Appl. Phys.
,
48
(
17
), p.
175501
. 10.1088/0022-3727/48/17/175501
19.
Wang
,
Y.-Z.
,
Li
,
F.-M.
,
Huang
,
W.-H.
, and
Wang
,
Y.-S.
,
2007
, “
Effects of Inclusion Shapes on the Band Gaps in Two-Dimensional Piezoelectric Phononic Crystals
,”
J. Phys.: Condens. Matter
,
19
(
49
), p.
496204
. 10.1088/0953-8984/19/49/496204
20.
Liu
,
L.
,
Zhao
,
J.
,
Pan
,
Y.
,
Bonello
,
B.
, and
Zhong
,
Z.
,
2014
, “
Theoretical Study of SH-Wave Propagation in Periodically-Layered Piezomagnetic Structure
,”
Int. J. Mech. Sci.
,
85
, pp.
45
54
. 10.1016/j.ijmecsci.2014.04.028
21.
Huang
,
Y.
,
Wang
,
H. M.
, and
Chen
,
W. Q.
,
2014
, “
Symmetry Breaking Induces Band Gaps in Periodic Piezoelectric Plates
,”
J. Appl. Phys.
,
115
(
13
), p.
133501
. 10.1063/1.4870137
22.
Li
,
F.
,
Zhang
,
C.
, and
Liu
,
C.
,
2017
, “
Active Tuning of Vibration and Wave Propagation in Elastic Beams With Periodically Placed Piezoelectric Actuator/Sensor Pairs
,”
J. Sound Vib.
,
393
, pp.
14
29
. 10.1016/j.jsv.2017.01.038
23.
Psarobas
,
I. E.
,
Exarchos
,
D. A.
, and
Matikas
,
T. E.
,
2014
, “
Birefringent Phononic Structures
,”
AIP Adv.
,
4
(
12
), p.
124307
. 10.1063/1.4904812
24.
Lee
,
G.-Y.
,
Chong
,
C.
,
Kevrekidis
,
P. G.
, and
Yang
,
J.
,
2016
, “
Wave Mixing in Coupled Phononic Crystals Via a Variable Stiffness Mechanism
,”
J. Mech. Phys. Solids
,
95
, pp.
501
516
. 10.1016/j.jmps.2016.06.005
25.
Liu
,
L.
, and
Hussein
,
M. I.
,
2011
, “
Wave Motion in Periodic Flexural Beams and Characterization of the Transition Between Bragg Scattering and Local Resonance
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
011003
. 10.1115/1.4004592
26.
Yang
,
X.-D.
,
Cui
,
Q.-D.
,
Qian
,
Y.-J.
,
Zhang
,
W.
, and
Lim
,
C. W.
,
2018
, “
Modulating Band Gap Structure by Parametric Excitations
,”
ASME J. Appl. Mech.
,
85
(
6
), p.
061012
. 10.1115/1.4039755
27.
Narisetti
,
R. K.
,
Ruzzene
,
M.
, and
Leamy
,
M. J.
,
2011
, “
A Perturbation Approach for Analyzing Dispersion and Group Velocities in Two-Dimensional Nonlinear Periodic Lattices
,”
J. Vib. Acoust.
,
133
(
6
), p.
061020
. 10.1115/1.4004661
28.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
. 10.1115/1.4026911
29.
Langley
,
R. S.
,
1996
, “
The Response of Two-Dimensional Periodic Structures to Point Harmonic Forcing
,”
J. Sound Vib.
,
197
(
4
), pp.
447
469
. 10.1006/jsvi.1996.0542
30.
Langley
,
R. S.
,
Bardell
,
N. S.
, and
Ruivo
,
H. M.
,
1997
, “
The Response of Two-Dimensional Periodic Structures to Harmonic Point Loading: A Theoretical and Experimental Study of a Beam Grillage
,”
J. Sound Vib.
,
207
(
4
), pp.
521
535
. 10.1006/jsvi.1997.1154
You do not currently have access to this content.