Abstract

Motion and deposition of solid particles in fibrous filter with circular, diamond, and square fibers are numerically investigated. A coupled Lattice Boltzmann (LB) and discrete element (DE) method is presented and applied to simulate the filtration process in particulate flow, taking into account the mutual interaction between fluid and particle. The influence of pertinent parameters such as the Reynolds number, the particle-to-fiber diameter ratio, and the particle-to-fluid density ratio on filtration performance (pressure drop and capture efficiency) is analyzed for fibrous filter with different fiber cross-sectional shapes. The simulation results indicate that both the pressure drop and the capture efficiency of filter are considerably affected by the fiber’s shape. Dimensionless drag force increases with the Reynolds number when Re > 1. The filter with diamond fiber has a lower pressure drop than that of the circular and square cases. Meanwhile, the deposition of particles on the surface of square fiber is more favorable. From the filter quality factor standpoint, filter with diamond fiber exhibits a better filtration performance.

References

References
1.
Wang
,
H.
,
Zhao
,
H.
,
Guo
,
Z.
, and
Zheng
,
C.
,
2012
, “
Numerical Simulation of Particle Capture Process of Fibrous Filters Using Lattice Boltzmann Two-Phase Flow Model
,”
Powder Technol.
,
227
, pp.
111
122
. 10.1016/j.powtec.2011.12.057
2.
Marshall
,
H.
,
Sahraoui
,
M.
, and
Kaviany
,
M.
,
1994
, “
An Improved Analytic Solution for Analysis of Particle Trajectories in Fibrous, Two-Dimensional Filters
,”
Phys. Fluids
,
6
(
2
), pp.
507
520
. 10.1063/1.868346
3.
Schweers
,
E.
,
Umhauer
,
H.
, and
Löffler
,
F.
,
1994
, “
Experimental Investigation of Particle Collection on Single Fibres of Different Configurations
,”
Part. Part. Syst. Charact.
,
11
(
4
), pp.
275
283
. 10.1002/ppsc.19940110402
4.
Jörg Rembor
,
Hans
,
Maus
,
Ralf
, and
Umhauer
,
Heinz
,
1999
, “
Measurements of Single Fibre Efficiencies at Critical Values of the Stokes Number
,”
Part. Part. Syst. Charact.
,
16
(
2
), pp.
54
59
. 10.1002/(SICI)1521-4117(199906)16:2<54::AID-PPSC54>3.0.CO;2-P
5.
Haugen
,
N. E. L.
, and
Kragset
,
S.
,
2010
, “
Particle Impaction on a Cylinder in a Crossflow as Function of Stokes and Reynolds Numbers
,”
J. Fluid Mech.
,
661
, pp.
239
261
. 10.1017/S0022112010002946
6.
Kirsch
,
A. A.
, and
Fuchs
,
N. A.
,
1967
, “
Studies on Fibrous Aerosol Filters—II. Pressure Drops in Systems of Parallel Cylinders
,”
Ann. Occup. Hyg.
,
10
(
4
), pp.
23
30
. 10.1093/annhyg/10.1.23
7.
Stechkina
,
I. B.
,
Kirsch
,
A. A.
, and
Fuchs
,
N. A.
,
1969
, “
Studies in Fibrous Aerosol Filters IV. Calculation of Aerosol Depositionion in Model Filters in the Range of Maximum Penetration
,”
Ann. Occup. Hyg.
,
12
(
3
), pp.
1
8
. 10.1093/annhyg/12.1.1
8.
Lee
,
K. W.
, and
Liu
,
B. Y. H.
,
1982
, “
Theoretical Study of Aerosol Filtration by Fibrous Filters
,”
Aerosol Sci. Technol.
,
1
(
2
), pp.
147
161
. 10.1080/02786828208958584
9.
Kuwabara
,
S.
,
1959
, “
The Forces Experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers
,”
J. Phys. Soc. Japan
,
14
(
4
), pp.
527
537
. 10.1143/JPSJ.14.527
10.
Liu
,
Z. G.
, and
Wang
,
P. K.
,
1997
, “
Pressure Drop and Interception Efficiency of Multifiber Filters
,”
Aerosol Sci. Technol.
,
26
(
4
), pp.
313
325
. 10.1080/02786829708965433
11.
Lee
,
K. W.
, and
Liu
,
B. Y. H.
,
1982
, “
Experimental Study of Aerosol Filtration by Fibrous Filters
,”
Aerosol Sci. Technol.
,
1
(
1
), pp.
35
46
. 10.1080/02786828208958577
12.
Wang
,
H.
,
Zhao
,
H.
,
Wang
,
K.
,
He
,
Y.
, and
Zheng
,
C.
,
2013
, “
Simulation of Filtration Process for Multi-fiber Filter Using the Lattice-Boltzmann Two-Phase Flow Model
,”
J. Aerosol Sci.
,
66
, pp.
164
178
. 10.1016/j.jaerosci.2013.08.016
13.
Aarnes
,
J. R.
,
Haugen
,
N. E. L.
, and
Andersson
,
H. I.
,
2019
, “
Inertial Particle Impaction on a Cylinder in Turbulent Cross-flow at Modest Reynolds Numbers
,”
Int. J. Multiph. Flow
,
111
, pp.
53
61
. 10.1016/j.ijmultiphaseflow.2018.11.001
14.
Zhu
,
C.
,
Lin
,
C.
, and
Cheung
,
C. S.
,
2000
, “
Inertial Impaction-Dominated Fibrous Filtration With Rectangular or Cylindrical Fibers
,”
Powder Technol.
,
112
(
1–2
), pp.
149
162
. 10.1016/S0032-5910(99)00315-0
15.
Wang
,
H.
,
Zhao
,
H.
,
Wang
,
K.
, and
Zheng
,
C.
,
2014
, “
Simulating and Modeling Particulate Removal Processes by Elliptical Fibers
,”
Aerosol Sci. Technol.
,
48
(
2
), pp.
207
218
. 10.1080/02786826.2013.868595
16.
Brandon
,
D. J.
, and
Aggarwal
,
S. K.
,
2001
, “
A Numerical Investigation of Particle Deposition on a Square Cylinder Placed in a Channel Flow
,”
Aerosol Sci. Technol.
,
34
(
4
), pp.
340
352
. 10.1080/02786820121279
17.
Jafari
,
S.
,
Salmanzadeh
,
M.
,
Rahnama
,
M.
, and
Ahmadi
,
G.
,
2010
, “
Investigation of Particle Dispersion and Deposition in a Channel With a Square Cylinder Obstruction Using the Lattice Boltzmann Method
,”
J. Aerosol Sci.
,
41
(
2
), pp.
198
206
. 10.1016/j.jaerosci.2009.10.005
18.
Salmanzadeh
,
M.
,
Rahnama
,
M.
, and
Ahmadi
,
G.
,
2007
, “
Particle Transport and Deposition in a Duct Flow With a Rectangular Obstruction
,”
Part. Sci. Technol.
,
25
(
5
), pp.
401
412
. 10.1080/02726350701487181
19.
Lin
,
K.
,
Tao
,
H.
, and
Lee
,
K.
,
2014
, “
An Early Stage of Aerosol Particle Transport in Flows Past Periodic Arrays of Clear Staggered Obstructions: A Computational Study
,”
Aerosol Sci. Technol.
,
48
(
12
), pp.
1299
1307
. 10.1080/02786826.2014.982783
20.
Hosseini
,
S. A.
, and
Vahedi Tafreshi
,
H.
,
2011
, “
On the Importance of Fibers’ Cross-Sectional Shape for Air Filters Operating in the Slip Flow Regime
,”
Powder Technol.
,
212
(
3
), pp.
425
431
. 10.1016/j.powtec.2011.06.025
21.
Huang
,
H.
,
Wang
,
K.
, and
Zhao
,
H.
,
2016
, “
Numerical Study of Pressure Drop and Diffusional Collection Efficiency of Several Typical Noncircular Fibers in Filtration
,”
Powder Technol.
,
292
, pp.
232
241
. 10.1016/j.powtec.2016.02.012
22.
Tehrani
,
S. M. B.
,
Moosavi
,
A.
, and
Sadrhosseini
,
H.
,
2016
, “
Filtration of Aerosol Particles by Cylindrical Fibers Within a Parallel and Staggered Array
,”
Microsyst. Technol.
,
22
(
5
), pp.
965
967
. 10.1007/s00542-015-2674-5
23.
Shin
,
C.
,
2006
, “
Finite Element Simulation of Deep Bed Filtration
,”
Chem. Eng. Sci.
,
61
(
8
), pp.
2324
2329
. 10.1016/j.ces.2005.10.053
24.
Ladd
,
A. J. C.
, and
Verberg
,
R.
,
2001
, “
Lattice-Boltzmann Simulations of Particle-Fluid Suspensions
,”
J. Stat. Phys.
,
104
(
5
), pp.
1191
1251
. 10.1023/A:1010414013942
25.
Zhou
,
J.
,
2010
, “
Lattice Boltzmann Method for Advection and Anisotropic Dispersion Equation
,”
J. Appl. Mech.
,
78
(
2
), p.
021007
. 10.1115/1.4002572
26.
De Rosis
,
A.
,
Falcucci
,
G.
,
Ubertini
,
S.
,
Ubertini
,
F.
, and
Succi
,
S.
,
2013
, “
Lattice Boltzmann Analysis of Fluid-Structure Interaction With Moving Boundaries
,”
Commun. Comput. Phys.
,
13
(
3
), pp.
823
834
. 10.4208/cicp.141111.201211s
27.
Ernst
,
M.
,
Dietzel
,
M.
, and
Sommerfeld
,
M.
,
2013
, “
A Lattice Boltzmann Method for Simulating Transport and Agglomeration of Resolved Particles
,”
Acta Mech.
,
224
(
10
), pp.
2425
2449
. 10.1007/s00707-013-0923-1
28.
Chen
,
S.
,
Cheung
,
C. S.
,
Chan
,
C. K.
, and
Zhu
,
C.
,
2002
, “
Numerical Simulation of Aerosol Collection in Filters With Staggered Parallel Rectangular Fibres
,”
Comput. Mech.
,
28
(
2
), pp.
152
161
. 10.1007/s00466-001-0289-4
29.
Shin
,
C.
,
2006
, “
Numerical Simulation for Particle Penetration Depth Distribution in Deep Bed Filtration
,”
Chem. Eng. Technol.
,
29
(
8
), pp.
905
909
. 10.1002/ceat.200600111
30.
Rabiee
,
B. M.
,
Talebi
,
S.
,
Abouali
,
O.
, and
Izadpanah
,
E.
,
2015
, “
Investigation of the Characteristics of Particulate Flows Through Fibrous Filters Using the Lattice Boltzmann Method
,”
Particuology
,
21
, pp.
90
98
. 10.1016/j.partic.2014.11.010
31.
Elghobashi
,
S.
,
1994
, “
On Predicting Particle-Laden Turbulent Flows
,”
Appl. Sci. Res.
,
52
(
4
), pp.
309
329
. 10.1007/BF00936835
32.
Fan
,
J.
,
Lominé
,
F.
, and
Hellou
,
M.
,
2018
, “
A Numerical Analysis of Pressure Drop and Particle Capture Efficiency by Rectangular Fibers Using LB-DE Methods
,”
Acta Mech.
,
229
(
7
), pp.
2843
2860
. 10.1007/s00707-018-2140-4
33.
Cundall
,
P. A.
, and
Strack
,
O. D.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Geomechanics
,
29
(
1
), pp.
47
65
. 10.1680/geot.1979.29.1.47
34.
Lominé
,
F.
, and
Oger
,
L.
,
2010
, “
Transit Time During the Interparticle Percolation Process
,”
Phys. Rev. E
,
82
(
4
), p.
041301
. 10.1103/PhysRevE.82.041301
35.
Cheng
,
C.
, and
Zhang
,
X.
,
2013
, “
Modeling of Interior Ballistic Gas-Solid Flow Using a Coupled Computational Fluid Dynamics-Discrete Element Method
,”
J. Appl. Mech.
,
80
(
3
), p.
031403
. 10.1115/1.4023313
36.
Lominé
,
F.
,
Scholtès
,
L.
,
Sibille
,
L.
, and
Poullain
,
P.
,
2013
, “
Modeling of Fluid-Solid Interaction in Granular Media With Coupled Lattice Boltzmann/Discrete Element Methods: Application to Piping Erosion
,”
Int. J. Numer. Anal. Methods Geomech.
,
37
(
6
), pp.
577
596
. 10.1002/nag.1109
37.
Feng
,
Y. T.
,
Han
,
K.
, and
Owen
,
D. R. J.
,
2007
, “
Coupled Lattice Boltzmann Method and Discrete Element Modelling of Particle Transport in Turbulent Fluid Flows : Computational Issues
,”
Int. J. Numer. Meth. Eng.
,
72
(
June
), pp.
1111
1134
. 10.1002/nme.2114
38.
Fan
,
J.
,
Lominé
,
F.
, and
Hellou
,
M.
,
2018
, “
Modelling Particle Capture Efficiency With Lattice Boltzmann Method
,”
Commun. Comput. Phys.
,
23
(
4
), pp.
932
950
. 10.4208/cicp.OA-2016-0236
39.
D’Humières
,
D.
,
Lallemand
,
P.
, and
Frisch
,
U.
,
1986
, “
Lattice Gas Models for 3D Hydrodynamics
,”
Europhys. Lett.
,
2
(
4
), pp.
291
297
. 10.1209/0295-5075/2/4/006
40.
Qian
,
Y. H.
,
D’Humières
,
D.
, and
Lallemand
,
P.
,
1992
, “
Lattice BGK Models for Navier-Stokes Equation
,”
Europhys. Lett.
,
17
(
6
), pp.
479
484
. 10.1209/0295-5075/17/6/001
41.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
,
94
(
3
), pp.
511
525
. 10.1103/PhysRev.94.511
42.
Zou
,
Q.
, and
He
,
X.
,
1997
, “
On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model
,”
Phys. Fluids
,
9
(
6
), pp.
1591
1598
. 10.1063/1.869307
43.
Lominé
,
F.
, and
Oger
,
L.
,
2009
, “
Dispersion of Particles by Spontaneous Interparticle Percolation Through Unconsolidated Porous Media
,”
Phys. Rev. E Stat. Nonlin. Soft Matter. Phys.
,
79
(
5
), pp.
1
12
. 10.1103/PhysRevE.79.051307
44.
Kruggel-Emden
,
H.
,
Simsek
,
E.
,
Rickelt
,
S.
,
Wirtz
,
S.
, and
Scherer
,
V.
,
2007
, “
Review and Extension of Normal Force Models for the Discrete Element Method
,”
Powder Technol.
,
171
(
3
), pp.
157
173
. 10.1016/j.powtec.2006.10.004
45.
Schwager
,
T.
, and
Pöschel
,
T.
,
2007
, “
Coefficient of Restitution and Linear-Dashpot Model Revisited
,”
Granul. Matter
,
9
(
6
), pp.
465
469
. 10.1007/s10035-007-0065-z
46.
Fan
,
J.
,
Lominé
,
F.
, and
Hellou
,
M.
,
2017
, “
Numerical Study of Particle Capture Efficiency in Granular Filter
,”
EPJ Web Conf.
,
140
(
3
), p.
03003
. 10.1051/epjconf/201714003003
47.
Verlet
,
L.
,
1967
, “
Computer “Experiments” on Classical Fluids I. Thermodynamical Properties of Lennard-Jones Molecules
,”
Phys. Rev.
,
159
(
1
), pp.
98
103
. 10.1103/PhysRev.159.98
48.
Yang
,
G. C.
,
Jing
,
L.
,
Kwok
,
C. Y.
, and
Sobral
,
Y. D.
,
2019
, “
A Comprehensive Parametric Study of LBM-DEM for Immersed Granular Flows
,”
Comput. Geotech.
,
114
, p.
103100
. 10.1016/j.compgeo.2019.103100
49.
Ladd
,
A. J. C.
,
1994
, “
Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation. Part 1. Theoretical Foundation
,”
J. Fluid Mech.
,
271
(
1
), pp.
285
309
. 10.1017/S0022112094001771
50.
Duval
,
H.
,
Masson
,
D.
,
Guillot
,
J. B.
,
Schmitz
,
P.
, and
D’Humières
,
D.
,
2006
, “
Two-Dimensional Lattice-Boltzmann Model of Hydrosol Depth Filtration
,”
AIChE J.
,
52
(
1
), pp.
39
48
. 10.1002/aic.10606
51.
Wang
,
K.
, and
Zhao
,
H.
,
2015
, “
The Influence of Fiber Geometry and Orientation Angle on Filtration Performance
,”
Aerosol Sci. Technol.
,
49
(
2
), pp.
75
85
. 10.1080/02786826.2014.1003278
52.
Wang
,
J.
, and
Pui
,
D. Y. H.
,
2009
, “
Filtration of Aerosol Particles by Elliptical Fibers: A Numerical Study
,”
J. Nanoparticle Res.
,
11
(
1
), pp.
185
196
. 10.1007/s11051-008-9422-z
53.
Podgórski
,
A.
,
Bałazy
,
A.
, and
Gradoń
,
L.
,
2006
, “
Application of Nanofibers to Improve the Filtration Efficiency of the Most Penetrating Aerosol Particles in Fibrous Filters
,”
Chem. Eng. Sci.
,
61
(
20
), pp.
6804
6815
. 10.1016/j.ces.2006.07.022
You do not currently have access to this content.