Abstract

In a 1966 publication, Chi-Yi Wang used the streamfunction in concert with the vorticity equations to develop a methodology for obtaining exact solutions to the incompressible Navier–Stokes equations, now known as the extended Beltrami method. In Wang's approach, the vorticity is represented by the sum of a linear function of the streamfunction and an assumed auxiliary function, such that the vorticity equation can be reduced to a quasi-linear partial differential equation, and exact solutions are obtainable for many choices of the auxiliary function. In the present work, a natural extension of Wang's formulation to three-dimensional flows in arbitrary orthogonal curvilinear coordinates has been derived, wherein two auxiliary functions are formed at the outset, with the caveat that the pressure and velocity components may vary in two spatial dimensions. As is the case with two-dimensional extended Beltrami flows, exact solutions are only obtainable when the forms of the auxiliary functions are “simple enough” to render the governing equations solvable. To demonstrate the solutions which may be obtained using the extended formulation, the well-known Kovasznay flow is generalized to a three-dimensional flow. A unique solution in plane polar coordinates is found. An extension to the solution to Burgers vortex has been derived and discussed in the context of existing literature. Finally, a new 3D swirling flow solution which is the angular analogue to Kovasznay flow has been developed.

References

References
1.
Pozrikidis
,
C.
,
2011
,
Introduction to Theoretical and Computational Fluid Dynamics
,
2nd ed.
,
Oxford University Press
,
New York, NY
.
2.
Wang
,
C.-Y.
,
1989
, “
Exact Solutions of the Unsteady Navier–Stokes Equations
,”
ASME Appl. Mech. Rev.
,
42
(
11S
), pp.
S269
S282
. 10.1115/1.3152400
3.
Wang
,
C.-Y.
,
1991
, “
Exact Solutions of the Steady-State Navier–Stokes Equations
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
159
177
. 10.1146/annurev.fl.23.010191.001111
4.
Drazin
,
P. G.
, and
Riley
,
N.
,
2006
,
The Navier–Stokes Equations: A Classification of Flows and Exact Solutions
,
1st ed.
,
Cambridge University Press
,
Cambridge
.
5.
Polyanin
,
A. D.
, and
Aristov
,
S. N.
,
2011
, “
A New Method for Constructing Exact Solutions to Three-Dimensional Navier–Stokes and Euler Equations
,”
Theor. Found. Chem. Eng.
,
45
(
6
), pp.
885
890
. 10.1134/S0040579511060091
6.
Polyanin
,
A. D.
, and
Zhurov
,
A. I.
,
2016
, “
Functional and Generalized Separable Solutions to Unsteady Navier–Stokes Equations
,”
Int. J. Non-Linear Mech.
,
79
, pp.
88
98
. 10.1016/j.ijnonlinmec.2015.10.015
7.
Kumar
,
M.
, and
Kumar
,
R.
,
2014
, “
On Some New Exact Solutions of Incompressible Steady State Navier–Stokes Equations
,”
Meccanica
,
49
(
2
), pp.
335
345
. 10.1007/s11012-013-9798-4
8.
Tsien
,
H. S.
,
1943
, “
Symmetrical Joukowsky Airfoils in Shear Flow
,”
Q. Appl. Math.
,
1
(
2
), pp.
130
148
. 10.1090/qam/8537
9.
Wang
,
C.-Y.
,
1990
, “
Exact Solutions of the Navier–Stokes Equations—The Generalized Beltrami Flows, Review and Extension
,”
Acta Mech.
,
81
(
1–2
), pp.
69
74
. 10.1007/BF01174556
10.
Hill
,
M. J. M.
,
1894
, “
VI. On a Spherical Vortex
,”
Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci.
,
185
(
1
), pp.
213
245
. 10.1098/rsta.1894.0006
11.
O’Brien
,
V.
,
1961
, “
Steady Spheroidal Vortices More Exact Solutions to the Navier–Stokes Equation
,”
Q. Appl. Math.
,
19
(
2
), pp.
163
168
. 10.1090/qam/137415
12.
Fujimoto
,
M.
,
Science
,
S.
,
Uehara
,
K.
, and
Yanase
,
S.
,
2015
, “
Vortex Solutions of the Generalized Beltrami Flows to the Euler Equations
,” e-print arXiv:1501.05620.
13.
Joseph
,
S. P.
,
2018
, “
Polynomial Solutions and Other Exact Solutions of Axisymmetric Generalized Beltrami Flows
,”
Acta Mech.
,
229
(
7
), pp.
2737
2750
. 10.1007/s00707-018-2137-z
14.
Berker
,
R.
,
1963
,
Intégration des équations du Mouvement D’un Fluide Visqueux Incompressible
,
Springer
,
Berlin
.
15.
Terrill
,
R. M.
,
1982
, “
An Exact Solution for Flow in a Porous Pipe
,”
Z. Angew. Math. Mech.
,
33
(
4
), pp.
547
552
.
16.
Saccomandi
,
G.
,
1994
, “
Some Exact Pseudo-Plane Solutions of the First Kind for the Navier–Stokes Equations
,”
Z. Angew. Math. Mech.
,
45
(
6
), pp.
978
985
.
17.
Saccomandi
,
G.
,
1994
, “
Some Unsteady Exact Pseudo-Plane Solutions for the Navier–Stokes Equations
,”
Meccanica
,
29
(
3
), pp.
261
269
. 10.1007/BF01461439
18.
Weinbaum
,
S.
, and
O’Brien
,
V.
,
1967
, “
Exact Navier–Stokes Solutions Including Swirl and Cross Flow
,”
Phys. Fluids
,
10
(
7
), pp.
1438
1447
. 10.1063/1.1762303
19.
Wang
,
C.-Y.
,
1966
, “
On a Class of Exact Solutions of the Navier–Stokes Equations
,”
ASME J. Appl. Mech.
,
33
(
3
), pp.
696
698
. 10.1115/1.3625151
20.
Lopez
,
J. M.
,
1990
, “
Axisymmetric Vortex Breakdown Part 1. Confined Swirling Flow
,”
J. Fluid Mech.
,
221
, p.
533
. 10.1017/S0022112090003664
21.
Polyanin
,
A. D.
,
2001
, “
Exact Solutions to the Navier–Stokes Equations With Generalized Separation of Variables
,”
Dokl. Phys.
,
46
(
10
), pp.
726
731
. 10.1134/1.1415590
22.
Lewellen
,
W. S.
,
1962
, “
A Solution for Three-Dimensional Vortex Flows With Strong Circulation
,”
J. Fluid Mech.
,
14
(
3
), pp.
420
432
. 10.1017/S0022112062001330
23.
Granger
,
R.
,
1966
, “
Steady Three-Dimensional Vortex Flow
,”
J. Fluid Mech.
,
25
(
3
), pp.
557
576
. 10.1017/S0022112066000247
24.
Kovasznay
,
L. I. G.
,
1948
, “
Laminar Flow Behind a Two-Dimensional Grid
,”
Proc. Camb. Phil. Soc.
,
44
(
May
), pp.
58
62
. 10.1017/S0305004100023999
25.
Taylor
,
G.
,
1923
, “
On the Decay of Vortices in a Viscous Fluid
,”
London Edinburgh Dublin Phil. Mag. J. Sci.
,
46
(
274
), pp.
671
674
. 10.1080/14786442308634295
26.
Leprovost
,
N.
,
Dubrulle
,
B.
, and
Chavanis
,
P. H.
,
2006
, “
Dynamics and Thermodynamics of Axisymmetric Flows: Theory
,”
Phys. Rev. E: Stat. Nonlinear Soft Matter Phys.
,
73
(
4
), pp.
1
18
.
27.
Batchelor
,
G. K.
,
1964
, “
Axial Flow in Trailing Line Vortices
,”
J. Fluid Mech.
,
20
(
4
), p.
645
. 10.1017/S0022112064001446
28.
Bhattacharya
,
S.
,
2007
, “
Exact Analytical Solutions for Steady Three-Dimensional Inviscid Vortical Flows
,”
J. Fluid Mech.
,
590
, pp.
147
162
. 10.1017/S0022112007007938
29.
Lin
,
S. P.
, and
Tobak
,
M.
,
1986
, “
Reversed Flow Above a Plate With Suction
,”
AIAA J.
,
24
(
2
), pp.
334
335
. 10.2514/3.9265
30.
Chandna
,
O. P.
, and
Oku-Ukpong
,
E. O.
,
1994
, “
Flows for Chosen Vorticity Functions—Exact Solutions of the Navier–Stokes Equations
,”
Int. J. Math. Math. Sci.
,
17
(
1
), pp.
155
164
. 10.1155/S0161171294000219
31.
Islam
,
S.
,
Zhou
,
C.-Y.
, and
Ran
,
X.-J.
,
2008
, “
Exact Solutions for Different Vorticity Functions of Couple Stress Fluids
,”
J. Zhejiang Univ. Sci. A
,
9
(
5
), pp.
672
680
. 10.1631/jzus.A071433
32.
Hui
,
W. H.
,
1987
, “
Exact Solutions of the Unsteady Two-Dimensional Navier–Stokes Equations
,”
Z. Angew. Math. Mech.
,
38
(
5
), pp.
689
702
.
33.
Jamil
,
M.
,
2010
, “
A Class of Exact Solutions to Navier–Stokes Equations for the Given Vorticity Basic Governing Equations
,”
J. Nonlinear Sci.
,
9
(
3
), pp.
296
304
.
34.
Dunster
,
T. M.
,
1990
, “
Bessel Functions of Purely Imaginary Order, With an Application to Second-Order Linear Differential Equations Having a Large Parameter
,”
SIAM J. Math. Anal.
,
21
(
4
), pp.
995
1018
. 10.1137/0521055
35.
Maplesoft: A Division of Waterloo Maple Inc.
,
2018
, Maple 2018.1.
36.
Terrill
,
R. M.
, and
Thomas
,
P. W.
,
1969
, “
On Laminar Flow Through a Uniformly Porous Pipe
,”
Appl. Sci. Res.
,
21
(
1
), pp.
37
67
. 10.1007/BF00411596
37.
Burgers
,
J.
,
1948
, “
A Mathematical Model Illustrating the Theory of Turbulence
,”
Adv. Appl. Mech.
,
1
(
1
), pp.
171
199
. 10.1016/S0065-2156(08)70100-5
38.
Sullivan
,
R. D.
,
1959
, “
A Two-Cell Vortex Solution of the Navier–Stokes Equations
,”
J. Aerospace Sci.
,
26
(
11
), pp.
767
768
. 10.2514/8.8303
39.
Bellamy-Knights
,
P. G.
,
1970
, “
An Unsteady Two-Cell Vortex Solution of the Navier–Stokes Equations
,”
J. Fluid Mech.
,
41
(
3
), pp.
673
687
. 10.1017/S0022112070000836
40.
Craik
,
A. D. D.
,
2009
, “
Exact Vortex Solutions of the Navier–Stokes Equations With Axisymmetric Strain and Suction or Injection
,”
J. Fluid Mech.
,
626
, pp.
291
306
. 10.1017/S0022112009005849
41.
Farouk
,
T.
, and
Farouk
,
B.
,
2007
, “
Large Eddy Simulations of the Flow Field and Temperature Separation in the Ranque–Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4724
4735
. 10.1016/j.ijheatmasstransfer.2007.03.048
42.
Fatsis
,
A.
,
Statharas
,
J.
,
Panoutsopoulou
,
A.
, and
Vlachakis
,
N.
,
2010
, “
A New Class of Exact Solutions of the Navier–Stokes Equations for Swirling Flows in Porous and Rotating Pipes
,”
WIT Trans. Eng. Sci.
,
69
, pp.
67
78
. 10.2495/AFM100061
43.
Bloor
,
M. I. G.
, and
Ingham
,
D. B.
,
1987
, “
The Flow in Industrial Cyclones
,”
J. Fluid Mech.
,
178
(
1987
), p.
507
. 10.1017/S0022112087001344
44.
Maicke
,
B. A.
,
Cecil
,
O. M.
, and
Majdalani
,
J.
,
2017
, “
On the Compressible Bidirectional Vortex in a Cyclonically Driven Trkalian Flow Field
,”
J. Fluid Mech.
,
823
, pp.
755
786
. 10.1017/jfm.2017.310
45.
Aljuwayhel
,
N. F.
,
Nellis
,
G. F.
, and
Klein
,
S. A.
,
2005
, “
Parametric and Internal Study of the Vortex Tube Using a CFD Model
,”
Int. J. Refrig.
,
28
(
3
), pp.
442
450
. 10.1016/j.ijrefrig.2004.04.004
46.
Dyck
,
N. J.
, and
Straatman
,
A. G.
,
2018
, “
Energy Transfer Mechanisms in the Ranque–Hilsch Vortex Tube
,”
2018 Canadian Society for Mechanical Engineering (CSME) International Congress
,
York University, Toronto, Ontario, Canada
,
May 27–30
.
You do not currently have access to this content.