Scavenging mechanical energy from the deformation of roadways using piezoelectric energy transformers has been intensively explored and exhibits a promising potential for engineering applications. We propose here a new packaging method that exploits MC nylon and epoxy resin as the main protective materials for the piezoelectric energy harvesting (PEH) device. Wheel tracking tests are performed, and an electromechanical model is developed to double evaluate the efficiency of the PEH device. Results indicate that reducing the embedded depth of the piezoelectric chips may enhance the output power of the PEH device. A simple scaling law is established to show that the normalized output power of the energy harvesting system relies on two combined parameters, i.e., the normalized electrical resistive load and normalized embedded depth. It suggests that the output power of the system may be maximized by properly selecting the geometrical, material, and circuit parameters in a combined manner. This strategy might also provide a useful guideline for optimization of piezoelectric energy harvesting system in practical roadway applications.

References

References
1.
Zhang
,
H.
,
Shen
,
M. Z.
,
Zhang
,
Y. Y.
,
Chen
,
Y. S.
, and
,
C. F.
,
2018
, “
Identification of Static Loading Conditions Using Piezoelectric Sensor Arrays
,”
ASME J. Appl. Mech.
,
85
(
1
), p.
011008
.
2.
Wang
,
H.
,
Jasim
,
A.
, and
Chen
,
X. D.
,
2018
, “
Energy Harvesting Technologies in Roadway and Bridge for Different Applications—A Comprehensive Review
,”
Appl. Energy
,
212
, pp.
1083
1094
.
3.
Zhao
,
H. D.
,
Yu
,
J.
, and
Ling
,
J. M.
,
2010
, “
Finite Element Analysis of Cymbal Piezoelectric Transducers for Harvesting Energy From Asphalt Pavement
,”
J. Ceram. Soc. Jpn.
,
118
(
1382
), pp.
909
915
.
4.
Moure
,
A.
,
Izquierdo Rodríguez
,
M. A.
,
Hernández Rueda
,
S.
,
Gonzalo
,
A.
,
Rubio-Marcos
,
F.
,
Urquiza Cuadros
,
D.
,
Pérez-Lepe
,
A.
, and
Fernández
,
J. F.
,
2016
, “
Feasible Integration in Asphalt of Piezoelectric Cymbals for Vibration Energy Harvesting
,”
Energy Convers. Manage.
,
112
, pp.
246
253
.
5.
Jasim
,
A.
,
Yesner
,
G.
,
Wang
,
H.
,
Safari
,
A.
,
Maher
,
A.
, and
Basily
,
B.
,
2018
, “
Laboratory Testing and Numerical Simulation of Piezoelectric Energy Harvester for Roadway Applications
,”
Appl. Energy
,
224
, pp.
438
447
.
6.
Song
,
Y.
,
Yang
,
C. H.
,
Hong
,
S. K.
,
Hwang
,
S. J.
,
Kim
,
J. H.
,
Choi
,
J. Y.
,
Ryu
,
S. K.
, and
Sung
,
T. H.
,
2016
, “
Road Energy Harvester Designed as a Macro-Power Source Using the Piezoelectric Effect
,”
Int. J. Hydrogen Energy
,
41
(
29
), pp.
12563
12568
.
7.
Shin
,
Y.-H.
,
Jung
,
I.
,
Noh
,
M. S.
,
Kim
,
J. H.
,
Choi
,
J. Y.
,
Kim
,
S.
, and
Kang
,
C. Y.
,
2018
, “
Piezoelectric Polymer-Based Roadway Energy Harvesting via Displacement Amplification Module
,”
Appl. Energy
,
216
, pp.
741
750
.
8.
Zhang
,
Y. Y.
,
Chen
,
Y. S.
,
Lu
,
B. W.
,
,
C. F.
, and
Feng
,
X.
,
2016
, “
Electromechanical Modeling of Energy Harvesting From the Motion of Left Ventricle in Closed Chest Environment
,”
ASME J. Appl. Mech.
,
83
(
6
), p.
061007
.
9.
Luo
,
Y. X.
,
Zhang
,
C. L.
,
Chen
,
W. Q.
, and
Yang
,
J. S.
,
2019
, “
Piezotronic Effect of a Thin Film With Elastic and Piezoelectric Semiconductor Layers Under a Static Flexural Loading
,”
ASME J. Appl. Mech.
,
86
(
5
), p.
051003
.
10.
Yang
,
C. H.
,
Song
,
Y.
,
Woo
,
M. S.
,
Eom
,
J. H.
,
Song
,
G. J.
,
Kim
,
J. H.
,
Kim
,
J.
,
Lee
,
T. H.
,
Choi
,
J. Y.
, and
Sung
,
T. H.
,
2017
, “
Feasibility Study of Impact-Based Piezoelectric Road Energy Harvester for Wireless Sensor Networks in Smart Highways
,”
Sens. Actuators A Phys.
,
261
, pp.
317
324
.
11.
Zou
,
H. X.
,
Zhang
,
W. M.
,
Wei
,
K. X.
,
Li
,
W. B.
,
Peng
,
Z. K.
, and
Meng
,
G.
,
2016
, “
A Compressive-Mode Wideband Vibration Energy Harvester Using a Combination of Bistable and Flextensional Mechanisms
,”
ASME J. Appl. Mech.
,
83
(
12
), p.
121005
.
12.
Chen
,
Y. S.
,
Zhang
,
H.
,
Zhang
,
Y. Y.
,
Li
,
C. H.
,
Yang
,
Q.
,
Zheng
,
H. Y.
, and
,
C. F.
,
2016
, “
Mechanical Energy Harvesting From Road Pavements Under Vehicular Load Using Embedded Piezoelectric Elements
,”
ASME J. Appl. Mech.
,
83
(
8
), p.
081001
.
13.
Xiao
,
J.
,
Zou
,
X.
, and
Xu
,
W. Y.
,
2017
, “
ePave: A Self-Powered Wireless Sensor for Smart and Autonomous Pavement
,”
Sensors
,
17
(
10
), p.
2207
.
14.
Yang
,
H. L.
,
Wang
,
L. B.
,
Hou
,
Y.
,
Guo
,
M.
,
Ye
,
Z. J.
,
Tong
,
X. L.
, and
Wang
,
D. W.
,
2017
, “
Development in Stacked-Array-Type Piezoelectric Energy Harvester in Asphalt Pavement
,”
J. Mater. Civil Eng.
,
29
(
11
), p.
04017224
.
15.
Wang
,
C. H.
,
Zhao
,
J. X.
,
Li
,
Q.
, and
Li
,
Y. W.
,
2018
, “
Optimization Design and Experimental Investigation of Piezoelectric Energy Harvesting Devices for Pavement
,”
Appl. Energy
,
229
, pp.
18
30
.
16.
Wang
,
C. H.
,
Song
,
Z.
,
Gao
,
Z. W.
,
Yu
,
G. X.
, and
Wang
,
S.
,
2019
, “
Preparation and Performance Research of Stacked Piezoelectric Energy-Harvesting Units for Pavements
,”
Energy Build.
,
183
, pp.
581
591
.
17.
Xiong
,
H. C.
, and
Wang
,
L. B.
,
2016
, “
Piezoelectric Energy Harvester for Public Roadway: On-Site Installation and Evaluation
,”
Appl. Energy
,
174
, pp.
101
107
.
18.
Roshani
,
H.
,
Dessouky
,
S.
,
Montoya
,
A.
, and
Papagiannakis
,
A. T.
,
2016
, “
Energy Harvesting From Asphalt Pavement Roadways Vehicle-Induced Stresses: A Feasibility Study
,”
Appl. Energy
,
182
, pp.
210
218
.
19.
Guo
,
L. K.
, and
Lu
,
Q.
,
2017
, “
Modeling a New Energy Harvesting Pavement System With Experimental Verification
,”
Appl. Energy
,
208
, pp.
1071
1082
.
20.
Jiang
,
X. Z.
,
Li
,
Y. C.
,
Li
,
J. C.
,
Wang
,
J.
, and
Yao
,
J.
,
2014
, “
Piezoelectric Energy Harvesting From Traffic-Induced Pavement Vibrations
,”
J. Renew. Sustain. Energy
,
6
(
4
), p.
043110
.
21.
Zhang
,
Z. W.
,
Xiang
,
H. J.
, and
Shi
,
Z. F.
,
2016
, “
Modeling on Piezoelectric Energy Harvesting From Pavements Under Traffic Loads
,”
J. Intell. Mater. Syst. Struct.
,
27
(
4
), pp.
567
578
.
22.
Chen
,
Y. S.
,
Zhang
,
H.
,
Quan
,
L. W.
,
Zhang
,
Z. C.
, and
,
C. F.
,
2018
, “
Theoretical Assessment on Piezoelectric Energy Harvesting in Smart Self-Powered Asphalt Pavements
,”
J. Vib. Eng. Technol.
,
6
(
1
), pp.
1
10
.
23.
Louhghalam
,
A.
,
Tootkaboni
,
M.
,
Igusa
,
T.
, and
Ulm
,
F. J.
,
2019
, “
Closed-Form Solution of Road Roughness-Induced Vehicle Energy Dissipation
,”
ASME J. Appl. Mech.
,
86
(
1
), p.
011003
.
24.
Ding
,
H. J.
, and
Chen
,
W. Q.
,
2001
,
Three Dimensional Problems of Piezoelasticity
,
Nova Science Publishers
,
New York
.
You do not currently have access to this content.