This work investigates the mode I and II interlaminar fracturing behavior of laminated composites and the related size effects. Fracture tests on geometrically scaled double cantilever beam (DCB) and end notch flexure (ENF) specimens were conducted. The results show a significant difference between the mode I and mode II fracturing behaviors. The strength of the DCB specimens scales according to the linear elastic fracture mechanics (LEFM), whereas ENF specimens show a different behavior. For ENF tests, small specimens exhibit a pronounced pseudoductility. In contrast, larger specimens behave in a more brittle way, with the size effect on nominal strength closer to that predicted by LEFM. This transition from quasi-ductile to brittle behavior is associated with the size of the fracture process zone (FPZ), which is not negligible compared with the specimen size. For the size range investigated in this study, the nonlinear effects of the FPZ can lead to an underestimation of the fracture energy by as much as 55%. Both the mode I and II test data can be captured very accurately by the Bažant’s type II size effect law (SEL).

References

1.
Lukaszewicz
,
D.
,
2013
, “Automotive Composite Structures for Crashworthiness,”
Advanced Composite Materials for Automotive Applications: Structural Integrity and Crashworthiness
,
A.
Elmarakbi
, ed.,
Wiley
,
New York
, pp.
100
127
.
2.
Rana
,
S.
, and
Fangueiro
,
R.
,
2016
,
Advanced Composites Materials for Aerospace Engineering
,
Woodhead Publishing
,
Amsterdam
.
3.
Song
,
D.
, and
Gupta
,
R.
,
2012
, “The Use of Thermosets in the Building and Construction Industry,”
Thermosets: Structure, Properties, and Applications
,
Q.
Guo
, ed.,
Elsevier
,
New York
, pp.
165
188
.
4.
Stenzenberger
,
H. D.
,
1993
, “
Recent Developments of Thermosetting Polymers for Advanced Composites
,”
Compos. Struct.
,
24
(
3
), pp.
219
231
.
5.
Pascault
,
R.
, and
Williams
,
J.
,
2018
, “Overview of Thermosets: Present and Future,”
Thermosets: Structure, Properties, and Applications
,
Q.
Guo
, ed.,
Elsevier
,
New York
, pp.
3
34
.
6.
Wan
,
Y.
, and
Takahashi
,
J.
,
2016
, “
Tensile and Compressive Properties of Chopped Carbon Fiber Tapes Reinforced Thermoplastics With Different Fiber Lengths and Molding Pressures
,”
Compos. Part A
,
87
, pp.
271
281
.
7.
Blok
,
L. G.
,
Longana
,
M. L.
,
Yu
,
H.
, and
Woods
,
B. K. S.
,
2018
, “
An Investigation Into 3D Printing of Fibre Reinforced Thermoplastic Composites
,”
Addit. Manuf.
,
22
, pp.
176
186
.
8.
Yao
,
S. S.
,
Jin
,
F. L.
,
Rhee
,
K. Y.
,
Hui
,
D.
, and
Park
,
S. J.
,
2018
, “
Recent Advances in Carbon-fiber-Reinforced Thermoplastic Composites: A Review
,”
Compos. Part B
,
142
, pp.
241
250
.
9.
Biron
,
M.
,
2018
,
Thermoplastics and Thermoplastic Composites, Plastics Design Library
,
Elsevier
,
Amsterdam
, pp.
1083
1126
.
10.
Ceccato
,
C.
,
Salviato
,
M.
,
Pellegrino
,
C.
, and
Cusatis
,
G.
,
2017
, “
Simulation of Concrete Failure and Fiber Reinforced Polymer Fracture in Confined Columns With Different Cross Sectional Shape
,”
Int. J. Solids Struct.
,
108
, pp.
216
229
.
11.
Cox
,
B. N.
,
Dadkhah
,
M. S.
,
Morris
,
W. L.
, and
Flintoff
,
J. G.
,
1994
, “
Failure Mechanisms of 3D Woven Composites in Tension, Compression, and Bending
,”
Acta Metall. Mater.
,
42
(
12
), pp.
3967
3984
.
12.
Long
,
A. C.
,
2005
,
Design and Manufacturing of Textile Composites
,
Cambridge University Press
,
Cambridge
.
13.
Bogdanovich
,
A. E.
,
2000
, “
Three-Dimensional Variational Theory of Laminated Composite Plates and Its Implementation With Bernstein Basis Functions
,”
Comput. Methods Appl. Mech. Eng.
,
185
(
2-4
), pp.
279
304
.
14.
Bogdanovich
,
A. E.
,
2006
, “
Multi-Scale Modeling, Stress and Failure Analyses of 3-D Woven Composites
,”
J. Mater. Sci.
,
41
(
20
), pp.
6547
6590
.
15.
Pankow
,
M.
,
Salvi
,
A.
,
Waas
,
A. M.
,
Yen
,
C. F.
, and
Ghiorse
,
S.
,
2011
, “
Resistance to Delamination of 3D Woven Textile Composites Evaluated Using End Notch Flexure (ENF) Tests: Experimental Results
,”
Compos. Part A.
,
42
(
10
), pp.
1463
1476
.
16.
Mouritz
,
A. P.
,
Leong
,
K. H.
, and
Herszberg
,
I.
,
1997
, “
A Review of the Effect of Stitching on the In-Plane Mechanical Properties of Fibre-Reinforced Polymer Composites
,”
Compos. Part A.
,
28
(
12
), pp.
979
991
.
17.
Maloney
,
K.
, and
Fleck
,
N.
,
2018
, “
Damage Tolerance of An Architected Adhesive Joint
,”
Int. J. Solids Struct.
,
132
, pp.
9
19
.
18.
Bažant
,
Z.
, and
Planas
,
J.
1998
,
Fracture and Size Effect in Concrete and Other Quasi-brittle Materials
,
CRC Press
,
Boca Raton
.
19.
Salviato
,
M.
,
Kirane
,
K.
,
Ashari
,
S.
,
Bažant
,
Z.
, and
Cusatis
,
G.
,
2016
, “
Experimental and Numerical Investigation of Intra-Laminar Energy Dissipation and Size Effect in Two-Dimensional Textile Composites
,”
Compos. Sci. Technol.
,
135
, pp.
67
75
.
20.
ASTM D3039
,
2014
, “
Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials
”.
21.
ASTM D3518
,
2014
, “
Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a ±45° Laminate
”.
22.
Salviato
,
M.
,
Chau
,
V. T.
,
Li
,
W.
,
Bažant
,
Z. P.
, and
Cusatis
,
G.
,
2016
, “
Direct Testing of Gradual Postpeak Softening of Fracture Specimens of Fiber Composites Stabilized by Enhanced Grip Stiffness and Mass
,”
J. Appl. Mech.
,
83
(
11
), p.
111003
.
23.
Salviato
,
M.
,
Ashari
,
S. E.
, and
Cusatis
,
G.
,
2016
, “
Spectral Stiffness Microplane Model for Damage and Fracture of Textile Composites
,”
Compos. Struct.
,
137
, pp.
170
184
.
24.
Kirane
,
K.
,
Salviato
,
M.
, and
Bažant
,
Z. P.
,
2016
, “
Microplane-Triad Model for Elastic and Fracturing Behavior of Woven Composites
,”
J. Appl. Mech.
,
83
(
4
), p.
041006
.
25.
Kirane
,
K.
,
Salviato
,
M.
, and
Bažant
,
Z. P.
,
2016
, “
Microplane Triad Model for Simple and Accurate Prediction of Orthotropic Elastic Constants of Woven Fabric Composites
,”
J. Compos. Mater.
,
50
(
9
), pp.
1247
1260
.
26.
ASTM D5528
,
2007
, “
Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites
”.
27.
Cantwell
,
W. J.
,
1997
, “
The Influence of Loading Rate on the Mode II Interlaminar Fracture Toughness of Composite Materials
,”
J. Compos. Mater.
,
31
(
14
), pp.
1364
1380
.
28.
Sousa
,
J. A.
,
Pereira
,
A. B.
,
Martins
,
A. P.
, and
de Morais
,
A. B.
,
2015
, “
Mode II Fatigue Delamination of Carbon/epoxy Laminates Using the End-notched Flexure Test
,”
Compos. Struct.
,
134
, pp.
506
512
.
29.
Carraro
,
P.A.
,
Meneghetti
,
G.
,
Quaresimin
,
M.
, and
Ricotta
,
M.
,
2013
, “
Crack Propagation Analysis in Composite Bonded Joints Under Mixed-mode (I+II) Static and Fatigue Loading: A Damage-based Model
,”
J. Adhes. Sci. Technol.
,
27
(
13
), pp.
1393
1406
.
30.
Cusatis
,
G.
, and
Schauffert
,
E. A.
,
2009
, “
Cohesive Crack Analysis of Size Effect
,”
Eng. Fract. Mech.
,
76
(
14
), pp.
2163
2173
.
31.
Quaresimin
,
M.
,
Salviato
,
M.
, and
Zappalorto
,
M.
,
2012
, “
Fracture and Interlaminar Properties of Clay-Modified Epoxies and Their Glass Reinforced Laminates
,”
Eng. Fract. Mech.
,
81
, pp.
80
93
.
32.
Bažant
,
Z. P.
,
1984
, “
Size Effect in Blunt Fracture: Concrete, Rock, Metal
,”
J. Eng. Mech. ASCE
,
110
(
4
), pp.
518
535
.
33.
Bažant
,
Z. P.
, and
Kazemi
,
M. T.
,
1990
, “
Determination of Fracture Energy, Process Zone Longth and Brittleness Number From Size Effect, With Application to Rock and Concrete
,”
Int. J. Fract.
,
44
(
2
), pp.
111
131
.
34.
Bažant
,
Z. P.
,
Daniel
,
I. M.
, and
Li
,
Z.
,
1996
, “
Size Effect and Fracture Characteristics of Composite Laminates
,”
J. Eng. Mater.-T ASME
,
118
(
3
), pp.
317
24
.
35.
Mefford
,
C. H.
,
Qiao
,
Y.
, and
Salviato
,
M.
,
2017
, “
Failure Behavior and Scaling of Graphene Nanocomposites
,”
Compos. Struct.
,
176
, pp.
961
972
.
36.
Qiao
,
Y.
, and
Salviato
,
M.
,
2019
, “
Study of the Fracturing Behavior of Thermoset Polymer Nanocomposites Via Cohesive Zone Modeling
,”
Compos. Struct.
,
220
, pp.
127
147
.
37.
Hoover
,
C.
, and
Bažant
,
Z.
,
2019
, “
Strength and Cohesive Behavior of Thermoset Polymers at the Microscale: A Size-Effect Study
,”
Eng. Fract. Mech.
,
213
, pp.
100
117
.
38.
ABAQUS
,
2013
,
ABAQUS Users Manual, Version 6.13-1
,
Hibbit, Karlson and Sorenson
,
Pawtucket, RI
.
39.
Barsoum
,
R. S.
,
1976
, “
A Degenerate Solid Element for Linear Fracture Analysis of Plate Bending and General Shells
,”
Int. J. Numer. Meth. Eng.
,
10
(
3
), pp.
551
564
.
40.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
.
41.
Williams
,
J. G.
,
1989
, “
End Corrections for Orthotropic DCB Specimens
,”
Compos. Sci. Technol.
,
35
(
4
), pp.
367
376
.
42.
Williams
,
J. G.
, and
Hadavinia
,
H.
,
2002
, “
Analytical Solutions for Cohesive Zone Models
,”
J. Mech. Phys. Solids
,
50
(
4
), pp.
809
825
.
43.
Soykasap
,
O.
,
Pellegrino
,
S.
,
Howard
,
P.
, and
Notter
,
M.
,
2008
, “
Folding Large Antenna Tape Spring
,”
J. Spacecraft Rockets
,
45
(
3
), pp.
560
567
.
44.
Mallikarachchi
,
H. M. Y. C.
, and
Pellegrino
,
S.
,
2011
, “
Quasi-Static Folding and Deployment of Ultrathin Composite Tape-spring Hinges
,”
J. Spacecraft Rockets
,
48
(
1
), pp.
187
198
.
45.
Hoover
,
C. G.
, and
Bažant
,
Z. P.
,
2014
, “
Cohesive Crack, Size Effect, Crack Band and Work-of-fracture Models Compared to Comprehensive Concrete Fracture Tests
,”
Int. J. Fract.
,
187
(
1
), pp.
133
143
.
You do not currently have access to this content.