At micro- and nanoscales, the gas pressure load is generally simulated by the thermal motion of gas molecules. However, the pressure load can hardly be produced or controlled accurately, because the effects of the wall thickness and the atomic weight of the gas molecules are not taken into account. In this paper, we propose a universal gas molecules model for simulating the pressure load accurately at micro- and nanoscales, named mock gas molecules model. Six scale-independent parameters are established in this model, thus the model is applicable at both micro- and nanoscales. To present the validity and accuracy of the model, the proposed model is applied into the coarse-grained molecular dynamics simulation of graphene blister, and the simulation results agree well with experimental observations from the graphene blister test, indicating that the model can produce and control the pressure load accurately. Furthermore, the model can be easily implemented into many simulators for problems about the solid–gas interaction, especially for membrane gas systems.

References

References
1.
Tyan
,
T.
,
McClain
,
B.
,
Arthurs
,
K.
,
Rupp
,
J.
,
Ghannam
,
M.
,
Bauch
,
D.
,
Clark
,
T.
,
Bhalsod
,
D.
, and
Wang
,
J.
,
2012
, “
Side Crash Pressure Sensor Prediction: An Improved Corpuscular Particle Method
,”
SAE Int. J. Mater. Manuf.
,
5
(
2
), pp.
285
303
.
2.
Kitt
,
A. L.
,
Qi
,
Z.
,
Rémi
,
S.
,
Park
,
H. S.
,
Swan
,
A. K.
, and
Goldberg
,
B. B.
,
2013
, “
How Graphene Slides: Measurement and Theory of Strain-Dependent Frictional Forces Between Graphene and SiO2
,”
Nano Lett.
,
13
(
6
), pp.
2605
2610
.
3.
Wang
,
G.
,
Dai
,
Z.
,
Wang
,
Y.
,
Tan
,
P.
,
Liu
,
L.
,
Xu
,
Z.
,
Wei
,
Y.
,
Huang
,
R.
, and
Zhang
,
Z.
,
2017
, “
Measuring Interlayer Shear Stress in Bilayer Graphene
,”
Phys. Rev. Lett.
,
119
(
3
), p.
036101
.
4.
Grünwald
,
M.
, and
Dellago
,
C.
,
2009
, “
Nucleation and Growth in Structural Transformations of Nanocrystals
,”
Nano Lett.
,
9
(
5
), pp.
2099
2102
.
5.
Morgan
,
B. J.
, and
Madden
,
P. A.
,
2007
, “
Pressure-Driven Phase Transitions in Crystalline Nanoparticles: Surface Effects on Hysteresis
,”
J. Phys. Chem. C
,
111
(
18
), pp.
6724
6731
.
6.
Koenig
,
S. P.
,
Boddeti
,
N. G.
,
Dunn
,
M. L.
, and
Bunch
,
J. S.
,
2011
, “
Ultrastrong Adhesion of Graphene Membranes
,”
Nat. Nanotechnol.
,
6
(
9
), pp.
543
546
.
7.
Boddeti
,
N. G.
,
Koenig
,
S. P.
,
Long
,
R.
,
Xiao
,
J.
,
Bunch
,
J. S.
, and
Dunn
,
M. L.
,
2013
, “
Mechanics of Adhered, Pressurized Graphene Blisters
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041044
.
8.
Ma
,
Y.
,
Wang
,
G.
,
Chen
,
Y.
,
Long
,
D.
,
Guan
,
Y.
,
Liu
,
L.
, and
Zhang
,
Z.
,
2018
, “
Extended Hencky Solution for the Blister Test of Nanomembrane
,”
Extrem. Mech. Lett.
,
22
, pp.
69
78
.
9.
Nijmeijer
,
M. J. P.
,
Bakker
,
A. F.
,
Bruin
,
C.
, and
Sikkenk
,
J. H.
,
1988
, “
A Molecular Dynamics Simulation of the Lennard-Jones Liquid–Vapor Interface
,”
J. Chem. Phys.
,
89
(
6
), pp.
3789
3792
.
10.
Zhukhovitskii
,
D. I.
,
1995
, “
Molecular Dynamics Study of Cluster Evolution in Supersaturated Vapor
,”
J. Chem. Phys.
,
103
(
21
), pp.
9401
9407
.
11.
Yasuoka
,
K.
, and
Matsumoto
,
M.
,
1998
, “
Molecular Dynamics of Homogeneous Nucleation in the Vapor Phase. I. Lennard-Jones Fluid
,”
J. Chem. Phys.
,
109
(
19
), pp.
8451
8462
.
12.
Yasuoka
,
K.
, and
Matsumoto
,
M.
,
1998
, “
Molecular Dynamics of Homogeneous Nucleation in the Vapor Phase. II. Water
,”
J. Chem. Phys.
,
109
(
19
), pp.
8463
8470
.
13.
Toxvaerd
,
S.
,
2003
, “
Molecular Dynamics Simulation of Nucleation in the Presence of a Carrier Gas
,”
J. Chem. Phys.
,
119
(
20
), pp.
10764
10770
.
14.
Tang
,
H. Y.
, and
Ford
,
I. J.
,
2006
, “
Microscopic Simulations of Molecular Cluster Decay: Does the Carrier Gas Affect Evaporation?
,”
J. Chem. Phys.
,
125
(
14
), p.
144316
.
15.
Yasuoka
,
K.
, and
Zeng
,
X. C.
,
2007
, “
Molecular Dynamics of Homogeneous Nucleation in the Vapor Phase of Lennard-Jones. III. Effect of Carrier Gas Pressure
,”
J. Chem. Phys.
,
126
(
12
), p.
124320
.
16.
Yoshioka
,
T.
,
Asaeda
,
M.
, and
Tsuru
,
T.
,
2007
, “
A Molecular Dynamics Simulation of Pressure-Driven Gas Permeation in a Micropore Potential Field on Silica Membranes
,”
J. Membr. Sci.
,
293
(
1
), pp.
81
93
.
17.
Cao
,
B.-Y.
,
Chen
,
M.
, and
Guo
,
Z.-Y.
,
2006
, “
Effect of Surface Roughness on Gas Flow in Microchannels by Molecular Dynamics Simulation
,”
Int. J. Eng. Sci.
,
44
(
13
), pp.
927
937
.
18.
Barisik
,
M.
,
Kim
,
B.
, and
Beskok
,
A.
,
2010
, “
Smart Wall Model for Molecular Dynamics Simulations of Nanoscale Gas Flows
,”
Commun. Comput. Phys.
,
7
(
5
), pp.
977
993
.
19.
Barisik
,
M.
, and
Beskok
,
A.
,
2012
, “
Surface–Gas Interaction Effects on Nanoscale Gas Flows
,”
Microfluid. Nanofluid.
,
13
(
5
), pp.
789
798
.
20.
Barisik
,
M.
, and
Beskok
,
A.
,
2014
, “
Scale Effects in Gas Nano Flows
,”
Phys. Fluids
,
26
(
5
), p.
052003
.
21.
Bao
,
F.
,
Huang
,
Y.
,
Zhang
,
Y.
, and
Lin
,
J.
,
2015
, “
Investigation of Pressure-Driven Gas Flows in Nanoscale Channels Using Molecular Dynamics Simulation
,”
Microfluid. Nanofluid.
,
18
(
5
), pp.
1075
1084
.
22.
Barisik
,
M.
, and
Beskok
,
A.
,
2015
, “
Molecular Free Paths in Nanoscale Gas Flows
,”
Microfluid. Nanofluid.
,
18
(
5
), pp.
1365
1371
.
23.
Barisik
,
M.
, and
Beskok
,
A.
,
2016
, “
“Law of the Nano-Wall” in Nano-Channel Gas Flows
,”
Microfluid. Nanofluid.
,
20
(
3
), p.
46
.
24.
Alexiadis
,
A.
,
Lockerby
,
D. A.
,
Borg
,
M. K.
, and
Reese
,
J. M.
,
2013
, “
A Laplacian-Based Algorithm for Non-Isothermal Atomistic-Continuum Hybrid Simulation of Micro and Nano-Flows
,”
Comput. Methods Appl. Mech. Eng.
,
264
, pp.
81
94
.
25.
Abade
,
G. C.
, and
Cunha
,
F. R.
,
2007
, “
Computer Simulation of Particle Aggregates During Sedimentation
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
45
), pp.
4597
4612
.
26.
Oh
,
J.-Y.
,
Koo
,
Y.-H.
,
Cheon
,
J.-S.
,
Lee
,
B.-H.
, and
Sohn
,
D.-S.
,
2008
, “
Molecular Dynamics Simulation of the Pressure–Volume–Temperature Data of Xenon for a Nuclear Fuel
,”
J. Nucl. Mater.
,
372
(
1
), pp.
89
93
.
27.
Ruiz
,
L.
,
Xia
,
W.
,
Meng
,
Z.
, and
Keten
,
S.
,
2015
, “
A Coarse-Grained Model for the Mechanical Behavior of Multi-Layer Graphene
,”
Carbon
,
82
, pp.
103
115
.
28.
Steve
,
O. N.
,
Carlos
,
F. L.
,
Goundla
,
S.
, and
Michael
,
L. K.
,
2004
, “
Coarse Grain Models and the Computer Simulation of Soft Materials
,”
J. Phys.: Condens. Matter
,
16
(
15
), p.
R481
.
29.
Kreis
,
K.
,
Fogarty
,
A. C.
,
Kremer
,
K.
, and
Potestio
,
R.
,
2015
, “
Advantages and Challenges in Coupling an Ideal Gas to Atomistic Models in Adaptive Resolution Simulations
,”
Eur. Phys. J.
,
224
(
12
), pp.
2289
2304
.
30.
Shang
,
J.-J.
,
Yang
,
Q.-S.
, and
Liu
,
X.
,
2017
, “
New Coarse-Grained Model and its Implementation in Simulations of Graphene Assemblies
,”
J. Chem. Theory Comput.
,
13
(
8
), pp.
3706
3714
.
31.
Cranford
,
S.
,
Sen
,
D.
, and
Buehler
,
M. J.
,
2009
, “
Meso-Origami: Folding Multilayer Graphene Sheets
,”
Appl. Phys. Lett.
,
95
(
12
), p.
123121
.
32.
Steven
,
C.
, and
Markus
,
J. B.
,
2011
, “
Twisted and Coiled Ultralong Multilayer Graphene Ribbons
,”
Modell. Simul. Mater. Sci. Eng.
,
19
(
5
), p.
054003
.
33.
Waisman
,
H.
, and
Fish
,
J.
,
2006
, “
A Space–Time Multilevel Method for Molecular Dynamics Simulations
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
44
), pp.
6542
6559
.
34.
Farrell
,
K.
,
Oden
,
J. T.
, and
Faghihi
,
D.
,
2015
, “
A Bayesian Framework for Adaptive Selection, Calibration, and Validation of Coarse-Grained Models of Atomistic Systems
,”
J. Comput. Phys.
,
295
, pp.
189
208
.
35.
Farrell
,
K.
, and
Oden
,
J. T.
,
2014
, “
Calibration and Validation of Coarse-Grained Models of Atomic Systems: Application to Semiconductor Manufacturing
,”
Comput. Mech.
,
54
(
1
), pp.
3
19
.
36.
Zhang
,
N.
,
Zhang
,
P.
,
Kang
,
W.
,
Bluestein
,
D.
, and
Deng
,
Y.
,
2014
, “
Parameterizing the Morse Potential for Coarse-Grained Modeling of Blood Plasma
,”
J. Comput. Phys.,
257
(
Pt A
), pp.
726
736
.
37.
Li
,
T.
, and
Gu
,
Y.
,
2014
, “
A Stochastic Thermostat Algorithm for Coarse-Grained Thermomechanical Modeling of Large-Scale Soft Matters: Theory and Application to Microfilaments
,”
J. Comput. Phys.
,
263
, pp.
177
184
.
38.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
.
39.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
40.
Dannenberg
,
H.
,
1961
, “
Measurement of Adhesion by a Blister Method
,”
J. Appl. Polym. Sci.
,
5
(
14
), pp.
125
134
.
41.
Hinkley
,
J. A.
,
1983
, “
A Blister Test for Adhesion of Polymer Films to SiO2
,”
J. Adhes.
,
16
(
2
), pp.
115
125
.
42.
Wan
,
K. T.
, and
Mai
,
Y. W.
,
1995
, “
Fracture Mechanics of a New Blister Test With Stable Crack Growth
,”
Acta Metall. Mater.
,
43
(
11
), pp.
4109
4115
.
43.
Zhou
,
Y.
,
Chen
,
Y.
,
Liu
,
B.
,
Wang
,
S.
,
Yang
,
Z.
, and
Hu
,
M.
,
2015
, “
Mechanics of Nanoscale Wrinkling of Graphene on a Non-Developable Surface
,”
Carbon
,
84
, pp.
263
271
.
44.
Van Liedekerke
,
P.
,
Tijskens
,
E.
,
Ramon
,
H.
,
Ghysels
,
P.
,
Samaey
,
G.
, and
Roose
,
D.
,
2010
, “
Particle-Based Model to Simulate the Micromechanics of Biological Cells
,”
Phys. Rev. E
,
81
(
6
), p.
061906
.
45.
Van Liedekerke
,
P.
,
Ghysels
,
P.
,
Tijskens
,
E.
,
Samaey
,
G.
,
Roose
,
D.
, and
Ramon
,
H.
,
2011
, “
Mechanisms of Soft Cellular Tissue Bruising. A Particle Based Simulation Approach
,”
Soft Matter
,
7
(
7
), pp.
3580
3591
.
46.
Liedekerke
,
P. V.
,
Ghysels
,
P.
,
Tijskens
,
E.
,
Samaey
,
G.
,
Smeedts
,
B.
,
Roose
,
D.
, and
Ramon
,
H.
,
2010
, “
A Particle-Based Model to Simulate the Micromechanics of Single-Plant Parenchyma Cells and Aggregates
,”
Phys. Biol.
,
7
(
2
), p.
026006
.
47.
Li
,
X.
,
Peng
,
Z.
,
Lei
,
H.
,
Dao
,
M.
, and
Karniadakis
,
G. E.
,
2014
, “
Probing Red Blood Cell Mechanics, Rheology and Dynamics With a Two-Component Multi-Scale Model
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
,
372
(
2021
), p.
20130389
.
48.
Ye
,
T.
,
Phan-Thien
,
N.
,
Khoo
,
B. C.
, and
Lim
,
C. T.
,
2014
, “
A File of Red Blood Cells in Tube Flow: A Three-Dimensional Numerical Study
,”
J. Appl. Phys.
,
116
(
12
), p.
124703
.
49.
Ye
,
T.
,
Phan-Thien
,
N.
, and
Lim
,
C. T.
,
2016
, “
Particle-Based Simulations of Red Blood Cells—A Review
,”
J. Biomech.
,
49
(
11
), pp.
2255
2266
.
50.
Lian
,
Y.-P.
,
Liu
,
Y.
, and
Zhang
,
X.
,
2014
, “
Coupling of Membrane Element With Material Point Method for Fluid–Membrane Interaction Problems
,”
Int. J. Mech. Mater. Des.
,
10
(
2
), pp.
199
211
.
51.
Zhang
,
C.
,
Lou
,
J.
, and
Song
,
J.
,
2014
, “
A Cohesive Law for Interfaces in Graphene/Hexagonal Boron Nitride Heterostructure
,”
J. Appl. Phys.
,
115
(
14
), p.
144308
.
52.
Chen
,
Y.
,
Ma
,
Y.
,
Wang
,
S.
,
Zhou
,
Y.
, and
Liu
,
H.
,
2016
, “
The Morphology of Graphene on a Non-Developable Concave Substrate
,”
Appl. Phys. Lett.
,
108
(
3
), p.
031905
.
53.
Wang
,
S.
,
Ma
,
Y.
,
Pan
,
F.
,
Shao
,
L.
, and
Chen
,
Y.
,
2018
, “
A Mode-Independent Energy Method in Morphology Prediction of Graphene on Substrates With Nanoscale Asperities
,”
Int. J. Mech. Sci.
,
146–147
, pp.
355
365
.
You do not currently have access to this content.