In the past decades, various novel functions (i.e., negative Poisson's ratio, zero thermal expansion) have been obtained by tailoring the microstructures of the cellular structures. Among all the microstructures, the horseshoe topology shows a J-shaped stress–strain curve, which is quite different from the conventional materials. It can be inferred that the 2D lattice structure with horseshoe microstructure will also exhibit excellent out-of-plane impact resistance since the spider silk also exhibits the J-shaped stress–strain curve. In this paper, the out-of-plane sphere impact of 2D truss lattice structure is conducted using finite element method (FEM) simulation. The point has been made that, by replacing the direct-line beam to horseshoe curved beam, the out-of-plane impact resistance has been greatly improved. The most curved beam structure is found to have the best out-of-plane performs with the maximum energy absorption and the minimum passing through velocity.

References

References
1.
Lucas
,
R. M.
,
Satyajit
,
D.
, and
Julia
,
R. G.
,
2014
, “
Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices
,”
Science
,
345
(
6202
), pp.
1322
1326
.
2.
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Torrents
,
A.
,
Sorensen
,
A. E.
,
Lian
,
J.
,
Greer
,
J. R.
,
Valdevit
,
L.
, and
Carter
,
W. B.
,
2011
, “
Ultralight Metallic Microlattices
,”
Science
,
334
(
6058
), pp.
962
965
.
3.
Redenbach
,
C.
,
2009
, “
Microstructure Models for Cellular Materials
,”
Comput. Mater. Sci.
,
44
(
4
), pp.
1397
1407
.
4.
Cao
,
X.
,
Duan
,
S.
,
Liang
,
J.
,
Wen
,
W.
, and
Fang
,
D.
,
2018
, “
Mechanical Properties of an Improved 3D-Printed Rhombic Dodecahedron Stainless Steel Lattice Structure of Variable Cross Section
,”
Int. J. Mech. Sci.
,
145
, pp.
53
63
.
5.
Lakes
,
R.
,
1987
, “
Response: Negative Poisson’s Ratio Materials
,”
Science
,
238
(
4826
), p.
551
.
6.
Hou
,
J.
,
Li
,
D.
, and
Dong
,
L.
,
2018
, “
Mechanical Behaviors of Hierarchical Cellular Structures With Negative Poisson’s Ratio
,”
J. Mater. Sci.
,
53
(
14
), pp.
1
8
.
7.
Prall
,
D.
, and
Lakes
,
R. S.
,
1997
, “
Properties of a Chiral Honeycomb With a Poisson's Ratio of −1
,”
Int. J. Mech. Sci.
,
39
(
3
), pp.
305
307
.
8.
Lorato
,
A.
,
Innocenti
,
P.
,
Scarpa
,
F.
,
Alderson
,
A.
,
Alderson
,
K. L.
,
Zied
,
K. M.
,
Ravirala
,
N.
,
Miller
,
W.
,
Smith
,
C. W.
, and
Evans
,
K. E.
,
2010
, “
The Transverse Elastic Properties of Chiral Honeycombs
,”
Compos. Sci. Technol.
,
70
(7), pp.
1057
1063
.
9.
Bahaloo
,
H.
, and
Li
,
Y.
,
2019
, “
Micropolar Modeling of Auxetic Chiral Lattices With Tunable Internal Rotation
,”
ASME J. Appl. Mech.
,
86
(4), p.
041002
.
10.
Grima
,
J. N.
, and
Evans
,
K. E.
,
2000
, “
Auxetic Behavior From Rotating Squares
,”
J. Mater. Sci. Lett.
,
19
(
17
), pp.
1563
1565
.
11.
Grima
,
J. N.
,
Zammit
,
V.
,
Gatt
,
R.
,
Alderson
,
A.
, and
Evans
,
K. E.
,
2010
, “
Auxetic Behaviour From Rotating Semi-Rigid Units
,”
Phys. Status Solidi
,
244
(
3
), pp.
866
882
.
12.
Lu
,
T. J.
, and
Chen
,
C.
,
1999
, “
Thermal Transport and Fire Retardance Properties of Cellular Aluminium Alloys
,”
Acta Mater.
,
47
(
5
), pp.
1469
1485
.
13.
Maloney
,
K. J.
,
Fink
,
K. D.
,
Schaedler
,
T. A.
,
Kolodziejska
,
J. A.
,
Jacobsen
,
A. J.
, and
Roper
,
C. S.
,
2012
, “
Multifunctional Heat Exchangers Derived From Three-Dimensional Micro-Lattice Structures
,”
Int. J. Heat Mass Transfer
,
55
(
9-10
), pp.
2486
2493
.
14.
Lee
,
J. H.
,
Wang
,
L.
,
Boyce
,
M. C.
, and
Thomas
,
E. L.
,
2012
, “
Periodic Bicontinuous Composites for High Specific Energy Absorption
,”
Nano Lett.
,
12
(
8
), pp.
4392
4396
.
15.
Schaedler
,
T. A.
,
Ro
,
C. J.
,
Sorensen
,
A. E.
,
Eckel
,
Z.
,
Yang
,
S. S.
,
Carter
,
W. B.
, and
Jacobsen
,
A. J.
,
2014
, “
Designing Metallic Microlattices for Energy Absorber Applications
,”
Adv. Eng. Mater.
,
16
(
3
), pp.
276
283
.
16.
Dos Reis
,
F.
, and
Ganghoffer
,
J. F.
,
2012
, “
Equivalent Mechanical Properties of Auxetic Lattices From Discrete Homogenization
,”
Comput. Mater. Sci.
,
51
(
1
), pp.
314
321
.
17.
Dos Reis
,
F.
, and
Ganghoffer
,
J. F.
,
2014
, “
Homogenized Elastoplastic Response of Repetitive 2D Lattice Truss Materials
,”
Comput. Mater. Sci.
,
84
, pp.
145
155
.
18.
Jang
,
K.-I.
,
Chung
,
H. U.
,
Xu
,
S.
,
Lee
,
C. H.
,
Luan
,
H.
,
Jeong
,
J.
,
Cheng
,
H.
,
Kim
,
G.-T.
,
Han
,
S. Y.
,
Lee
,
J. W.
,
Kim
,
J.
,
Cho
,
M.
,
Miao
,
F.
,
Yang
,
Y.
,
Jung
,
H. N.
,
Flavin
,
M.
,
Liu
,
H.
,
Kong
,
G. W.
,
Yu
,
K. J.
,
Rhee
,
S. I.
,
Chung
,
J.
,
Kim
,
B.
,
Kwak
,
J. W.
,
Yun
,
M. H.
,
Kim
,
J. Y.
,
Song
,
Y. M.
,
Paik
,
U.
,
Zhang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
Soft Network Composite Materials With Deterministic and Bio-Inspired Designs
,”
Nat. Commun.
,
6
, p.
6566
.
19.
Ma
,
Q.
, and
Zhang
,
Y.
,
2016
, “
Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111008
.
20.
Ma
,
Q.
,
Cheng
,
H.
,
Jang
,
K. I.
,
Luan
,
H.
,
Hwang
,
K. C.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2016
, “
A Nonlinear Mechanics Model of Bio-Inspired Hierarchical Lattice Materials Consisting of Horseshoe Microstructures
,”
J. Mech. Phys. Solids
,
90
, pp.
179
202
.
21.
Zhang
,
E.
,
Liu
,
Y.
, and
Zhang
,
Y.
,
2018
, “
A Computational Model of Bio-Inspired Soft Network Materials for Analyzing Their Anisotropic Mechanical Properties
,”
ASME J. Appl. Mech.
,
85
(
7
), p.
071002
.
22.
Gosline
,
J. M.
,
Demont
,
M. E.
, and
Denny
,
M. W.
,
1986
, “
The Structure and Properties of Spider Silk
,”
Endeavour
,
10
(
1
), pp.
37
43
.
23.
Tasdemirci
,
A.
,
Akbulut
,
E. F.
,
Guzel
,
E.
,
Tuzgel
,
F.
,
Yucesoy
,
A.
,
Sahin
,
S.
, and
Guden
,
M.
,
2018
, “
Crushing Behavior and Energy Absorption Performance of a Bio-Inspired Metallic Structure: Experimental and Numerical Study
,”
Thin Wall. Struct.
,
131
, pp.
547
555
.
24.
Johnson
,
G.R.
, and
Cook
,
W.H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Eng. Fract. Mech.
,
21
, pp.
541
548
.
25.
Timoshenko
,
S. P.
, and
Gere
,
J.
,
1963
,
Theory of Elastic Stability.
2nd
,
McGraw-Hill
,
New York
.
26.
Fan
,
Z.
,
Zhang
,
Y.
,
Ma
,
Q.
,
Zhang
,
F.
,
Fu
,
H.
,
Hwang
,
K.-C.
, and
Huang
,
Y.
,
2016
, “
A Finite Deformation Model of Planar Serpentine Interconnects for Stretchable Electronics
,”
Int. J. Solids Struct.
,
91
, pp.
46
54
.
27.
Yan
,
Z.
,
Wang
,
B. L.
,
Wang
,
K.
, and
Zhang
,
C.
,
2018
, “
A Novel Cellular Substrate for Flexible Electronics With Negative Poisson Ratios Under Large Stretching
,”
Int. J. Mech. Sci.
,
151
, pp.
314
321
.
28.
Zhu
,
F.
,
Xiao
,
H.
,
Li
,
H.
,
Huang
,
Y.
, and
Ma
,
Y.
,
2019
, “
Irregular Hexagonal Cellular Substrate for Stretchable Electronics
,”
ASME J. Appl. Mech.
,
86
(
3
), p.
034501
.
29.
Sun
,
D.
,
Zhang
,
W.
,
Zhao
,
Y.
,
Li
,
G.
,
Xing
,
Y.
, and
Gong
,
G.
,
2013
, “
In-Plane Crushing and Energy Absorption Performance of Multi-Layer Regularly Arranged Circular Honeycombs
,”
Compos. Struct.
,
96
, pp.
726
735
.
30.
Ullah
,
I.
,
Brandt
,
M.
, and
Feih
,
S.
,
2016
, “
Failure and Energy Absorption Characteristics of Advanced 3D Truss Core Structures
,”
Mater. Des.
,
92
, pp.
937
948
.
31.
Abramowicz
,
W.
, and
Jones
,
N.
,
1984
, “
Dynamic Axial Crushing of Square Tubes
,”
Int. J. Impact Eng.
,
2
(
2
), pp.
179
208
.
32.
Hang
,
C.
,
Feng
,
Z.
,
Jang
,
K. I.
,
Xue
,
F.
, and
Ma
,
Y.
,
2017
, “
The Equivalent Medium of Cellular Substrate Under Large Stretching, With Applications to Stretchable Electronics
,”
J. Mech. Phys. Solids
,
120
, pp.
199
207
.
33.
Huang
,
Y.
,
Mu
,
Z.
,
Feng
,
P.
, and
Yuan
,
J.
,
2019
, “
Mechanics Design for Compatible Deformation of Fractal Serpentine Interconnects in High-Density Stretchable Electronics
,”
ASME J. Appl. Mech.
,
86
(
3
), p.
031011
.
You do not currently have access to this content.