This paper presents a new energy dissipation system composed of multistable cosine-curved domes (CCD) connected in series. The system exhibits multiple consecutive snap-through and snap-back buckling behavior with a hysteretic response. The response of the CCDs is within the elastic regime and hence the system's original configuration is fully recoverable. Numerical studies and experimental tests were conducted on the geometric properties of the individual CCD units and their number in the system to examine the force–displacement and energy dissipation characteristics. Finite element analysis (FEA) was performed to simulate the response of the system to develop a multilinear analytical model for the hysteretic response that considers the nonlinear behavior of the system. The model was used to study the energy dissipation characteristics of the system. Experimental tests on 3D printed specimens were conducted to analyze the system and validate numerical results. Results show that the energy dissipation mainly depends on the number and the apex height-to-thickness ratio of the CCD units. The developed multilinear analytical model yields conservative yet accurate values for the dissipated energy of the system. The proposed system offered reliable high energy dissipation with a maximum loss factor value of 0.14 for a monostable (self-recoverable) system and higher for a bistable system.

References

References
1.
Hu
,
N.
, and
Burgueño
,
R.
,
2015
, “
Buckling-Induced Smart Applications: Recent Advances and Trends
,”
Smart Mater. Struct.
,
24
(
6
), pp.
1
20
.
2.
Puglisi
,
G.
, and
Truskinovsky
,
L.
,
2002
, “
Rate Independent Hysteresis in a Bi-Stable Chain
,”
J. Mech. Phys. Solids
,
50
(
2
), pp.
165
187
.
3.
Bažant
,
Z. P.
, and
Cedolin
,
L.
,
2010
,
Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories
,
World Scientific
,
Singapore
.
4.
Shan
,
S.
,
Kang
,
S. H.
,
Raney
,
J. R.
,
Wang
,
P.
,
Fang
,
L.
,
Candido
,
F.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2015
, “
Multistable Architected Materials for Trapping Elastic Strain Energy
,”
Adv. Mater.
,
27
(
29
), pp.
4296
4301
.
5.
Ha
,
C. S.
,
Lakes
,
R. S.
, and
Plesha
,
M. E.
,
2018
, “
Design, Fabrication, and Analysis of Lattice Exhibiting Energy Absorption via Snap-Through Behavior
,”
Mater. Des.
,
141
, pp.
426
437
.
6.
Chen
,
T.
,
Mueller
,
J.
, and
Shea
,
K.
,
2016
, “
Design and Fabrication of a Bistable Unit Actuator With Multi-Material Additive Manufacturing
,”
Annu. Int. Solid Free. Fabr. Symp.
, pp.
2060
2076
.
7.
Liu
,
S.
,
Imaniazad
,
A.
, and
Burgueño
,
R.
,
2019
, “
Architected Materials for Tailorable Shear Behavior With Energy Dissipation
,”
Extrem. Mech. Lett.
,
28
, pp.
1
7
.
8.
Frenzel
,
T.
,
Findeisen
,
C.
,
Kadic
,
M.
,
Gumbsch
,
P.
, and
Wegener
,
M.
,
2016
, “
Tailored Buckling Microlattices as Reusable Light-Weight Shock Absorbers
,”
Adv. Mater.
,
28
(
28
), pp.
5865
5870
.
9.
Findeisen
,
C.
,
Hohe
,
J.
,
Kadic
,
M.
, and
Gumbsch
,
P.
,
2017
, “
Characteristics of Mechanical Metamaterials Based on Buckling Elements
,”
J. Mech. Phys. Solids
,
102
, pp.
151
164
.
10.
Restrepo
,
D.
,
Mankame
,
N. D.
, and
Zavattieri
,
P. D.
,
2015
, “
Phase Transforming Cellular Materials
,”
Extrem. Mech. Lett.
,
4
, pp.
52
60
.
11.
Correa
,
D. M.
,
Klatt
,
T.
,
Cortes
,
S.
,
Haberman
,
M.
,
Kovar
,
D.
, and
Seepersad
,
C.
,
2015
, “
Negative Stiffness Honeycombs for Recoverable Shock Isolation
,”
Rapid Prototyp. J.
,
21
(
2
), pp.
193
200
.
12.
Rafsanjani
,
A.
,
Akbarzadeh
,
A.
, and
Pasini
,
D.
,
2015
, “
Snapping Mechanical Metamaterials Under Tension
,”
Adv. Mater.
,
27
(
39
), pp.
5931
5935
.
13.
Liu
,
J.
,
Qin
,
H.
, and
Liu
,
Y.
,
2018
, “
Dynamic Behaviors of Phase Transforming Cellular Structures
,”
Compos. Struct.
,
184
, pp.
536
544
.
14.
Haghpanah
,
B.
,
Shirazi
,
A.
,
Salari-Sharif
,
L.
,
Guell Izard
,
A.
, and
Valdevit
,
L.
,
2017
, “
Elastic Architected Materials With Extreme Damping Capacity
,”
Extrem. Mech. Lett.
,
17
, pp.
56
61
.
15.
Kidambi
,
N.
,
Harne
,
R. L.
, and
Wang
,
K. W.
,
2017
, “
Energy Capture and Storage in Asymmetrically Multistable Modular Structures Inspired by Skeletal Muscle
,”
Smart Mater. Struct.
,
26
(
8
), pp.
1
15
.
16.
Alturki
,
M.
, and
Burgueño
,
R.
,
2019
, “
Response Characterization of Multistable Shallow Domes With Cosine-Curved Profile
,”
Thin Wall. Struct.
,
140
, pp.
74
94
.
17.
Chen
,
Q.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2018
, “
Design of Buckling-Induced Mechanical Metamaterials for Energy Absorption Using Topology Optimization
,”
Struct. Multidiscip. Optim.
,
58
(
4
), pp.
1395
1410
.
18.
Benichou
,
I.
, and
Givli
,
S.
,
2013
, “
Structures Undergoing Discrete Phase Transformation
,”
J. Mech. Phys. Solids
,
61
(1), pp.
94
113
.
19.
Vangbo
,
M.
,
1998
, “
An Analytical Analysis of a Compressed Bistable Buckled Beam
,”
Sens. Actuators A Phys.
,
69
(
3
), pp.
212
216
.
20.
Raaijmakers
,
J. G. W.
,
1987
, “
Statistical Analysis of the Michaelis-Menten Equation
,”
Biometrics
,
43
(
4
), pp.
793
803
.
21.
Pardo
,
S. A.
,
2016
,
Empirical Modeling and Data Analysis for Engineers and Applied Scientists
,
Springer
,
NJ
.
22.
Dassault Systèmes
,
2012
, “
Abaqus User Manual
.”
Abaqus Standard Version
,
Providence, RI
.
23.
Radomirovic
,
D.
, and
Kovacic
,
I.
,
2015
, “
An Equivalent Spring for Nonlinear Springs in Series
,”
Eur. J. Phys.
,
36
(
5
), pp.
1
6
.
24.
Feeny
,
B. F.
, and
Diaz
,
A. R.
,
2010
, “
Twinkling Phenomena in Snap-Through Oscillators
,”
J. Vib. Acoust.
,
132
(
6
), pp.
1
19
.
25.
Carfagni
,
M.
,
Lenzi
,
E.
, and
Pierini
,
M.
,
1998
, “
The Loss Factor as a Measure of Mechanical Damping
,”
Proceedings of the 16th International Modal Analysis Conference
,
Santa Barbara, CA
,
Feb. 2–5
,
3243
, pp.
580
584
.
You do not currently have access to this content.