This paper presents an analysis of void growth and coalescence in isotropic, elastoplastic materials exhibiting sigmoidal hardening using unit cell calculations and micromechanics-based damage modeling. Axisymmetric finite element unit cell calculations are carried out under tensile loading with constant nominal stress triaxiality conditions. These calculations reveal the characteristic role of material hardening in the evolution of the effective response of the porous solid. The local heterogeneous flow hardening around the void plays an important role, which manifests in the stress–strain response, porosity evolution, void aspect ratio evolution, and the coalescence characteristics that are qualitatively different from those of a conventional power-law hardening porous solid. A homogenization-based damage model based on the micromechanics of void growth and coalescence is presented with two simple, heuristic modifications that account for this effect. The model is calibrated to a small number of unit cell results with initially spherical voids, and its efficacy is demonstrated for a range of porosity fractions, hardening characteristics, and void aspect ratios.

References

References
1.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
,
17
(
3
), pp.
201
217
.
2.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.
3.
Benzerga
,
A. A.
, and
Besson
,
J.
,
2001
, “
Plastic Potentials for Anisotropic Porous Solids
,”
Eur. J. Mech. A Solids
,
20
(
3
), pp.
397
434
.
4.
Gologanu
,
M.
,
Leblond
,
J.-B.
, and
Devaux
,
J.
,
1993
, “
Approximate Models for Ductile Metals Containing Non-Spherical Voids: Case of Axisymmetric Prolate Ellipsoidal Cavities
,”
J. Mech. Phys. Solids
,
41
(
11
), pp.
1723
1754
.
5.
Gologanu
,
M.
,
Leblond
,
J.-B.
, and
Devaux
,
J.
,
1994
, “
Approximate Models for Ductile Metals Containing Nonspherical Voids: Case of Axisymmetric Oblate Ellipsoidal Cavities
,”
ASME J. Eng. Mater. Technol.
,
116
(
3
), pp.
290
297
.
6.
Pardoen
,
T.
, and
Hutchinson
,
J.
,
2000
, “
An Extended Model for Void Growth and Coalescence
,”
J. Mech. Phys. Solids
,
48
(
12
), pp.
2467
2512
.
7.
Madou
,
K.
, and
Leblond
,
J.-B.
,
2012
, “
A Gurson-Type Criterion for Porous Ductile Solids Containing Arbitrary Ellipsoidal Voids I: Limit-Analysis of Some Representative Cell
,”
J. Mech. Phys. Solids
,
60
(
5
), pp.
1020
1036
.
8.
Madou
,
K.
, and
Leblond
,
J.-B.
,
2012
, “
A Gurson-Type Criterion for Porous Ductile Solids Containing Arbitrary Ellipsoidal Voids II: Determination of Yield Criterion Parameters
,”
J. Mech. Phys. Solids
,
60
(
5
), pp.
1037
1058
.
9.
Monchiet
,
V.
,
Cazacu
,
O.
,
Charkaluk
,
E.
, and
Kondo
,
D.
,
2008
, “
Macroscopic Yield Criteria for Plastic Anisotropic Materials Containing Spheroidal Voids
,”
Int. J. Plast.
,
24
(
7
), pp.
1158
1189
.
10.
Danas
,
K.
,
2009
, “
A Finite-Strain Model for Anisotropic Viscoplastic Porous Media: I—Theory
,”
Eur. J. Mech. A Solids
,
28
(
3
), pp.
387
401
.
11.
Keralavarma
,
S.
, and
Benzerga
,
A.
,
2010
, “
A Constitutive Model for Plastically Anisotropic Solids With Non-Spherical Voids
,”
J. Mech. Phys. Solids
,
58
(
6
), pp.
874
901
.
12.
Morin
,
L.
,
Leblond
,
J.-B.
, and
Kondo
,
D.
,
2015
, “
A Gurson-Type Criterion for Plastically Anisotropic Solids Containing Arbitrary Ellipsoidal Voids
,”
Int. J. Solids Struct.,
77
(
20
), pp.
86
101
.
13.
Stewart
,
J. B.
, and
Cazacu
,
O.
,
2011
, “
Analytical Yield Criterion for an Anisotropic Material Containing Spherical Voids and Exhibiting Tension–Compression Asymmetry
,”
Int. J. Solids Struct.
,
48
(
2
), pp.
357
373
.
14.
Koplik
,
J.
, and
Needleman
,
A.
,
1988
, “
Void Growth and Coalescence in Porous Plastic Solids
,”
Int. J. Solids Struct.
,
24
(
8
), pp.
835
853
.
15.
Worswick
,
M.
, and
Pick
,
R.
,
1990
, “
Void Growth and Constitutive Softening in a Periodically Voided Solid
,”
J. Mech. Phys. Solids
,
38
(
5
), pp.
601
625
.
16.
Keralavarma
,
S.
,
Hoelscher
,
S.
, and
Benzerga
,
A.
,
2011
, “
Void Growth and Coalescence in Anisotropic Plastic Solids
,”
Int. J. Solids Struct.
,
48
(
11
), pp.
1696
1710
.
17.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
,
32
(
1
), pp.
157
169
.
18.
Benzerga
,
A. A.
, and
Leblond
,
J.-B.
,
2014
, “
Effective Yield Criterion Accounting for Microvoid Coalescence
,”
ASME J. Appl. Mech.
,
81
(
3
), p.
031009
.
19.
Morin
,
L.
,
Leblond
,
J.-B.
, and
Benzerga
,
A. A.
,
2015
, “
Coalescence of Voids by Internal Necking: Theoretical Estimates and Numerical Results
,”
J. Mech. Phys. Solids
,
75
, pp.
140
158
.
20.
Keralavarma
,
S.
, and
Chockalingam
,
S.
,
2016
, “
A Criterion for Void Coalescence in Anisotropic Ductile Materials
,”
Int. J. Plast.,
82
, pp.
159
176
.
21.
Benzerga
,
A. A.
, and
Leblond
,
J.-B.
,
2010
, “
Ductile Fracture by Void Growth to Coalescence
,”
Adv. Appl. Mech.,
44
, pp.
169
305
.
22.
Pineau
,
A.
,
Benzerga
,
A. A.
, and
Pardoen
,
T.
,
2016
, “
Failure of Metals I: Brittle and Ductile Fracture
,”
Acta Mater.,
107
, pp.
424
483
.
23.
Benzerga
,
A. A.
,
Leblond
,
J.-B.
,
Needleman
,
A.
, and
Tvergaard
,
V.
,
2016
, “
Ductile Failure Modeling
,”
Int. J. Fract.
,
201
(
1
), pp.
29
80
.
24.
Steenbrink
,
A.
,
Van der Giessen
,
E.
, and
Wu
,
P.
,
1997
, “
Void Growth in Glassy Polymers
,”
J. Mech. Phys. Solids
,
45
(
3
), pp.
405
438
.
25.
Leblond
,
J.-B.
,
Perrin
,
G.
, and
Devaux
,
J.
,
1995
, “
An Improved Gurson-Type Model for Hardenable Ductile Metals
,”
Eur. J. Mech. A Solids
,
14
(
4
), pp.
499
527
.
26.
Lecarme
,
L.
,
Tekog
,
C.
, and
Pardoen
,
T.
,
2011
, “
Void Growth and Coalescence in Ductile Solids With Stage III and Stage IV Strain Hardening
,”
Int. J. Plast.
,
27
(
8
), pp.
1203
1223
.
27.
Spitzig
,
W.
, and
Keh
,
A.
,
1970
, “
Orientation Dependence of the Strain-Rate Sensitivity and Thermally Activated Flow in Iron Single Crystals
,”
Acta Metall.
,
18
(
9
), pp.
1021
1033
.
28.
Wu
,
T.-Y.
,
Bassani
,
J. L.
, and
Laird
,
C.
,
1991
, “
Latent Hardening in Single Crystals I. Theory and Experiments
,”
Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci.,
435
(
1893
), pp.
1
19
.
29.
Bhattacharjee
,
A.
,
Varma
,
V.
,
Kamat
,
S.
,
Gogia
,
A.
, and
Bhargava
,
S.
,
2006
, “
Influence of β Grain Size on Tensile Behavior and Ductile Fracture Toughness of Titanium Alloy Ti-10V-2Fe-3Al
,”
Metall. Mater. Trans. A
,
37
(
5
), pp.
1423
1433
.
30.
Kelley
,
E. W.
, and
Hosford
,
W. F.
,
1967
, “
The Plastic Deformation of Magnesium
,” Technical Report.
31.
Ghosh
,
A.
, and
Hamilton
,
C.
,
1979
, “
Mechanical Behavior and Hardening Characteristics of a Superplastic Ti-6Al-4V Alloy
,”
Metall. Trans. A
,
10
(
6
), pp.
699
706
.
32.
Boyce
,
M. C.
,
Parks
,
D. M.
, and
Argon
,
A. S.
,
1988
, “
Large Inelastic Deformation of Glassy Polymers. Part I: Rate Dependent Constitutive Model
,”
Mech. Mater.
,
7
(
1
), pp.
15
33
.
33.
Gologanu
,
M.
,
Leblond
,
J.-B.
,
Perrin
,
G.
, and
Devaux
,
J.
,
1997
, “Recent Extensions of Gurson’s Model for Porous Ductile Metals,”
Continuum Micromechanics
,
Springer
,
Berlin
, pp.
61
130
.
34.
Keralavarma
,
S.
, and
Benzerga
,
A.
,
2015
, “
Numerical Assessment of an Anisotropic Porous Metal Plasticity Model
,”
Mech. Mater.,
90
, pp.
212
228
.
35.
Kweon
,
S.
,
Sagsoy
,
B.
, and
Benzerga
,
A.
,
2016
, “
Constitutive Relations and Their Time Integration for Anisotropic Elasto-Plastic Porous Materials
,”
Comput. Methods Appl. Mech. Eng.,
310
, pp.
495
534
.
36.
Benzerga
,
A. A.
,
2002
, “
Micromechanics of Coalescence in Ductile Fracture
,”
J. Mech. Phys. Solids
,
50
(
6
), pp.
1331
1362
.
37.
Gologanu
,
M.
,
Leblond
,
J.-B.
,
Perrin
,
G.
, and
Devaux
,
J.
,
2001
, “
Theoretical Models for Void Coalescence in Porous Ductile Solids. I. Coalescence in Layers
,”
Int. J. Solids Struct.
,
38
(
32–33
), pp.
5581
5594
.
38.
Kondori
,
B.
, and
Benzerga
,
A. A.
,
2014
, “
Effect of Stress Triaxiality on the Flow and Fracture of Mg Alloy az31
,”
Metall. Mater. Trans. A
,
45
(
8
), pp.
3292
3307
.
39.
Prasad
,
K. E.
,
Li
,
B.
,
Dixit
,
N.
,
Shaffer
,
M.
,
Mathaudhu
,
S.
, and
Ramesh
,
K.
,
2014
, “
The Dynamic Flow and Failure Behavior of Magnesium and Magnesium Alloys
,”
JOM
,
66
(
2
), pp.
291
304
.
40.
Kondori
,
B.
, and
Benzerga
,
A.
,
2015
, “
On the Notch Ductility of a Magnesium-Rare Earth Alloy
,”
Mater. Sci. Eng. A
,
647
, pp.
74
83
.
41.
Nemcko
,
M. J.
, and
Wilkinson
,
D. S.
,
2016
, “
Impact of Microstructure on Void Growth and Linkage in Pure Magnesium
,”
Int. J. Fract.
,
200
(
1–2
), pp.
31
47
.
42.
Prasad
,
N. S.
,
Narasimhan
,
R.
, and
Suwas
,
S.
,
2016
, “
Numerical Simulations of Cylindrical Void Growth in Mg Single Crystals
,”
Int. J. Fract.
,
200
(
1–2
), pp.
159
183
.
43.
Kondori
,
B.
, and
Benzerga
,
A.
,
2017
, “
Modeling Damage Accumulation to Fracture in a Magnesium-Rare Earth Alloy
,”
Acta Mater.,
124
, pp.
225
236
.
44.
Selvarajou
,
B.
,
Joshi
,
S. P.
, and
Benzerga
,
A. A.
,
2019
, “
Void Growth and Coalescence in Hexagonal Close Packed Crystals
,”
J. Mech. Phys. Solids
,
125
, pp.
198
224
.
This content is only available via PDF.
You do not currently have access to this content.