Discrete elastic rods (DER) algorithm presents a computationally efficient means of simulating the geometrically nonlinear dynamics of elastic rods. However, it can suffer from artificial energy loss during the time integration step. Our approach extends the existing DER technique by using a different time integration scheme—we consider a second-order, implicit Newmark-beta method to avoid energy dissipation. This treatment shows better convergence with time step size, specially when the damping forces are negligible and the structure undergoes vibratory motion. Two demonstrations—a cantilever beam and a helical rod hanging under gravity—are used to show the effectiveness of the modified discrete elastic rods simulator.

References

1.
Baraff
,
D.
, and
Witkin
,
A.
,
1998
, “
Large Steps in Cloth Simulation
,”
Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques
,
Orlando, FL
,
July 19–24
,
ACM
, pp.
43
54
.
2.
Grinspun
,
E.
,
Hirani
,
A. N.
,
Desbrun
,
M.
, and
Schröder
,
P.
,
2003
, “
Discrete Shells
,”
Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
,
San Diego, CA
,
July 27–31
,
Eurographics Association
, pp.
62
67
.
3.
Bergou
,
M.
,
Wardetzky
,
M.
,
Robinson
,
S.
,
Audoly
,
B.
, and
Grinspun
,
E.
,
2008
, “
Discrete Elastic Rods
,”
ACM Trans. Graphics (TOG)
,
27
(
3
), p.
63
.
4.
Bergou
,
M.
,
Audoly
,
B.
,
Vouga
,
E.
,
Wardetzky
,
M.
, and
Grinspun
,
E.
,
2010
, “
Discrete Viscous Threads
,”
ACM Trans. Graphics (TOG)
,
29
(
4
), p.
116
.
5.
Grinspun
,
E.
,
Desbrun
,
M.
,
Polthier
,
K.
,
Schröder
,
P.
, and
Stern
,
A.
,
2006
, “
Discrete Differential Geometry: An Applied Introduction
,”
ACM SIGGRAPH Course
,
7
, pp.
1
139
.
6.
Kirchhoff
,
G.
,
1859
, “
Uber Das Gleichgewicht Und Die Bewegung Eines Unendlich Dunnen Elastischen Stabes
,”
J. Reine Angew. Math.
,
1859
(
56
), pp.
285
313
.
7.
Audoly
,
B.
, and
Pomeau
,
Y.
,
2010
,
Elasticity and Geometry: From Hair Curls to the Non-linear Response of Shells
,
Oxford University Press
,
Oxford
.
8.
Jawed
,
M. K.
,
Da
,
F.
,
Joo
,
J.
,
Grinspun
,
E.
, and
Reis
,
P. M.
,
2014
, “
Coiling of Elastic Rods on Rigid Substrates
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
41
), pp.
14663
14668
.
9.
Jawed
,
M. K.
,
Khouri
,
N. K.
,
Da
,
F.
,
Grinspun
,
E.
, and
Reis
,
P. M.
,
2015
, “
Propulsion and Instability of a Flexible Helical Rod Rotating in a Viscous Fluid
,”
Phys. Rev. Lett.
,
115
(
16
), p.
168101
.
10.
Jawed
,
M. K.
, and
Reis
,
P. M.
,
2017
, “
Dynamics of a Flexible Helical Filament Rotating in a Viscous Fluid Near a Rigid Boundary
,”
Phys. Rev. Fluids
,
2
(
3
), p.
034101
.
11.
Baek
,
C.
,
Sageman-Furnas
,
A. O.
,
Jawed
,
M. K.
, and
Reis
,
P. M.
,
2018
, “
Form Finding in Elastic Gridshells
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
1
), pp.
75
80
.
12.
Huang
,
X.
,
Kumar
,
K.
,
Jawed
,
M. K.
,
Nasab
,
A. M.
,
Ye
,
Z.
,
Shan
,
W.
, and
Majidi
,
C.
,
2018
, “
Chasing Biomimetic Locomotion Speeds: Creating Untethered Soft Robots With Shape Memory Alloy Actuators
,”
Sci. Rob.
,
3
(
25
), p.
eaau 7557
.
13.
Huang
,
X.
,
Kumar
,
K.
,
Jawed
,
M. K.
,
Mohammadi
,
Nasab
,
Shan
,
W.
, and
Majidi
,
C.
,
2019
, “
Highly Dynamic Shape Memory Alloy Actuator for Fast Moving Soft Robots
,”
Adv. Mater. Technol.
, p.
1800540
.
14.
Huang
,
X.
,
Kumar
,
K.
,
Jawed
,
M. K.
,
Ye
,
Z.
, and
Majidi
,
C.
,
2019
, “
Soft Electrically Actuated Quadruped (SEAQ)-Integrating a Flex Circuit Board and Elastomeric Limbs for Versatile Mobility
,”
IEEE Rob. Autom. Lett.
,
4
(
3
), pp.
2415
2422
.
15.
Hughes
,
T. J.
,
2012
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Courier Corporation
,
North Chelmsford, MA
.
16.
Skouras
,
M.
,
Thomaszewski
,
B.
,
Coros
,
S.
,
Bickel
,
B.
, and
Gross
,
M.
,
2013
, “
Computational Design of Actuated Deformable Characters
,”
ACM Trans. Graphics (TOG)
,
32
(
4
), p.
82
.
17.
Chen
,
D.
,
Levin
,
D. I.
,
Matusik
,
W.
, and
Kaufman
,
D. M.
,
2017
, “
Dynamics-aware Numerical Coarsening for Fabrication Design
,”
ACM Trans. Graphics (TOG)
,
36
(
4
), p.
84
.
18.
Shen
,
Z.
,
Huang
,
J.
,
Chen
,
W.
, and
Bao
,
H.
,
2015
,
Computer Graphics Forum
, Vol.
34
,
Hoboken, NJ
, pp.
145
154
.
19.
Jawed
,
M. K.
,
Novelia
,
A.
, and
O’Reilly
,
O. M.
,
2018
,
A Primer on the Kinematics of Discrete Elastic Rods
,
Springer
,
New York
.
20.
Hahn
,
G.
,
1991
, “
A Modified Euler Method for Dynamic Analyses
,”
Int. J. Numer. Methods Eng.
,
32
(
5
), pp.
943
955
.
You do not currently have access to this content.