In recent years, metamaterials for the applications in low-frequency vibration suppression and noise reduction have attracted numerous research interests. This paper proposes a metamaterial system with local resonators from adjunct unit cells coupled by negative stiffness springs. Frist, a lumped parameter model of the system is developed, and a stability criterion is derived. The band structure of the infinite lattice model is calculated. The result reveals the appearance of extra band gaps in the proposed metamaterial. A parametric study shows that the first extra band gap can be tuned to ultralow frequency by controlling the negative stiffness of the coupling springs. A transmittance analysis of the finite lattice model verifies the predictions obtained from the band structure analysis. Subsequently, the work is extended to a distributed parameter metamaterial beam model with the proposed configuration of coupled local resonators. The stability analysis shows that the infinitely long metamaterial beam becomes unstable as long as the stiffness of the coupling spring becomes negative. For the finitely long metamaterial beam, the stability could be achieved for negative coupling springs of given stiffnesses. The effects of the number of cells and the lattice constant on the system stability are investigated. The transmittance of the finitely long metamaterial beam is calculated. The result shows that due to the restriction on the tunability of negative stiffness for the proposed metamaterial beam, a quasistatic vibration suppression region can only be achieved when the number of cells is small.

References

1.
Brewer
,
G. A.
,
1979
, “
Dynamic Vibration Absorber
,” U.S. Patent No. 4,150,588.
2.
Alabuzhev
,
P.
,
Gritchin
,
A.
,
Kim
,
L.
,
Migirenko
,
G
,
Chon
,
V.
, and
Stepanov
,
P.
,
1989
,
Vibration Protection and Measuring Systems With Quasi-Zero Stiffness
,
Hemisphere Publishing
,
New York
.
3.
McNamara
,
R. J.
,
1977
, “
Tuned Mass Dampers for Buildings
,”
J. Struct. Div.
,
103
(
9
), pp.
1785
1798
.
4.
Fuller
,
C. C.
,
Elliott
,
S.
, and
Nelson
,
P. A.
,
1996
,
Active Control of Vibration
,
Academic
,
New York
.
5.
Chang
,
J. C.
, and
Soong
,
T. T.
,
1980
, “
Structural Control Using Active Tuned Mass Dampers
,”
J. Eng. Mech. Div.
,
106
(
6
), pp.
1091
1098
.
6.
Yu
,
D.
,
Wen
,
J.
,
Zhao
,
H.
,
Liu
,
Y.
, and
Wen
,
X.
,
2008
, “
Vibration Reduction by Using the Idea of Phononic Crystals in a Pipe-Conveying Fluid
,”
J. Sound Vib.
,
318
(
1–2
), pp.
193
205
.
7.
Shi
,
Z.
,
Cheng
,
Z.
, and
Xiang
,
H.
,
2014
, “
Seismic Isolation Foundations With Effective Attenuation Zones
,”
Soil Dyn. Earthquake Eng.
,
57
, pp.
143
151
.
8.
Lu
,
M.
,
Feng
,
L.
, and
Chen
,
Y.
,
2009
, “
Phononic Crystals and Acoustic Metamaterials
,”
Mater. Today
,
12
(
12
), pp.
34
42
.
9.
Thorp
,
O.
,
Ruzzene
,
M.
, and
Baz
,
A.
,
2001
, “
Attenuation and Localization of Wave Propagation in Rods With Periodic Shunted Piezoelectric Patches
,”
Smart Mater. Struct.
,
10
(
5
), p.
979
.
10.
Chen
,
S.
,
Wang
,
G.
,
Wen
,
J.
, and
Wen
,
X.
,
2013
, “
Wave Propagation and Attenuation in Plates With Periodic Arrays of Shunted Piezo-Patches
,”
J. Sound Vib.
,
332
(
6
), pp.
1520
1532
.
11.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
12.
Liu
,
Z. Y.
,
Zhang
,
X. X.
,
Mao
,
Y. W.
,
Zhu
,
Y. Y.
,
Yang
,
Z. Y.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.
13.
Huang
,
H.
,
Sun
,
C.
, and
Huang
,
G.
,
2009
, “
On the Negative Effective Mass Density in Acoustic Metamaterials
,”
Int. J. Eng. Sci.
,
47
(
4
), pp.
610
617
.
14.
Yao
,
S.
,
Zhou
,
X.
, and
Hu
,
G.
,
2008
, “
Experimental Study on Negative Effective Mass in a 1D Mass-Spring System
,”
New J. Phys.
,
10
(
4
), p.
043020
.
15.
Liu
,
Y.
,
Yu
,
D.
,
Li
,
L.
,
Zhao
,
H.
,
Wen
,
J.
, and
Wen
,
X.
,
2007
, “
Design Guidelines for Flexural Wave Attenuation of Slender Beams With Local Resonators
,”
Phys. Lett. A
,
362
(
5
), pp.
344
347
.
16.
Zhu
,
R.
,
Liu
,
X.
,
Hu
,
G.
,
Sun
,
C.
, and
Huang
,
G.
,
2014
, “
A Chiral Elastic Metamaterial Beam for Broadband Vibration Suppression
,”
J. Sound Vib.
,
333
(
10
), pp.
2759
2773
.
17.
Nouh
,
M.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2014
, “
Metamaterial Structures With Periodic Local Resonances
,”
Proc. SPIE
,
9064
, pp.
90641Y-1
90641Y-11
.
18.
Huang
,
G.
, and
Sun
,
C.
,
2010
, “
Band Gaps in a Multiresonator Acoustic Metamaterial
,”
ASME J. Vib. Acoust. Trans.
,
132
(
3
), p.
031003
.
19.
Hu
,
G.
,
Tang
,
L.
,
Das
,
R.
,
Gao
,
S.
, and
Liu
,
H.
,
2017
, “
Acoustic Metamaterials With Coupled Local Resonators for Broadband Vibration Suppression
,”
AIP Adv.
,
7
(
2
), p.
025211
.
20.
Chen
,
S.
,
Wang
,
G.
, and
Song
,
Y.
,
2016
, “
Low-Frequency Vibration Isolation in Sandwich Plates by Piezoelectric Shunting Arrays
,”
Smart Mater. Struct.
,
25
(
12
), p.
125024
.
21.
Zhu
,
R.
,
Chen
,
Y. Y.
,
Barnhart
,
M. V.
,
Hu
,
G. K.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2016
, “
Experimental Study of an Adaptive Elastic Metamaterial Controlled by Electric Circuits
,”
Appl. Phys. Lett.
,
108
(
1
), p.
011905
.
22.
Hu
,
G.
,
Tang
,
L.
, and
Das
,
R.
,
2017
, “
Metamaterial-Inspired Piezoelectric System With Dual Functionalities: Energy Harvesting and Vibration Suppression
,”
Proc. SPIE
,
10164
, pp.
101641X-1
101641X-10
.
23.
Li
,
X.
,
Chen
,
Y.
,
Hu
,
G.
, and
Huang
,
G.
,
2018
, “
A Self-Adaptive Metamaterial Beam With Digitally Controlled Resonators for Subwavelength Broadband Flexural Wave Attenuation
,”
Smart Mater. Struct.
,
27
(
4
), p.
045015
.
24.
Zhou
,
W.
,
Wu
,
Y.
, and
Zuo
,
L.
,
2015
, “
Vibration and Wave Propagation Attenuation for Metamaterials by Periodic Piezoelectric Arrays With High-Order Resonant Circuit Shunts
,”
Smart Mater. Struct.
,
24
(
6
), p.
065021
.
25.
Xu
,
J.
, and
Tang
,
J.
,
2017
, “
Tunable Prism Based on Piezoelectric Metamaterial for Acoustic Beam Steering
,”
Appl. Phys. Lett.
,
110
(
18
), p.
181902
.
26.
Yu
,
D.
,
Wen
,
J.
,
Shen
,
H.
,
Xiao
,
Y.
, and
Wen
,
X.
,
2012
, “
Propagation of Flexural Wave in Periodic Beam on Elastic Foundations
,”
Phys. Lett. A
,
376
(
4
), pp.
626
630
.
27.
Lee
,
S. H.
,
Park
,
C. M.
,
Seo
,
Y. M.
,
Wang
,
Z. G.
, and
Kim
,
C. K.
,
2009
, “
Acoustic Metamaterial With Negative Modulus
,”
J. Phys.: Condens. Matter
,
21
(
17
), p.
175704
.
28.
Oh
,
J. H.
, and
Assouar
,
B.
,
2016
, “
Quasi-Static Stop Band With Flexural Metamaterial Having Zero Rotational Stiffness
,”
Sci. Rep.
,
6
, pp.
33410
.
29.
Drugan
,
W.
,
2017
, “
Wave Propagation in Elastic and Damped Structures With Stabilized Negative-Stiffness Components
,”
J. Mech. Phys. Solids
,
106
, pp.
34
45
.
30.
Lyapunov
,
A. M.
,
1992
, “
The General Problem of the Stability of Motion
,”
Int. J. Control
,
55
(
3
), pp.
531
534
.
31.
Hu
,
G.
,
Tang
,
L.
, and
Das
,
R.
,
2018
, “
Internally Coupled Metamaterial Beam for Simultaneous Vibration Suppression and Low Frequency Energy Harvesting
,”
J. Appl. Phys.
,
123
(
5
), p.
055107
.
32.
Hu
,
G.
,
Tang
,
L.
, and
Das
,
R.
,
2018
, “
General Framework for Modeling Multifunctional Metamaterial Beam Based on a Derived One-Dimensional Piezoelectric Composite Finite Element
,”
J. Aerospace Eng.
,
31
(
6
), p.
04018088
.
33.
Wang
,
Y.
, and
Lakes
,
R.
,
2004
, “
Extreme Stiffness Systems Due to Negative Stiffness Elements
,”
Am. J. Phys.
,
72
(
1
), pp.
40
50
.
34.
Fulcher
,
B. A.
,
Shahan
,
D. W.
,
Haberman
,
M. R.
,
Seepersad
,
C. C.
, and
Wilson
,
P. S.
,
2014
, “
Analytical and Experimental Investigation of Buckled Beams as Negative Stiffness Elements for Passive Vibration and Shock Isolation Systems
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031009
.
35.
Sarlis
,
A. A.
,
Pasala
,
D. T. R.
,
Constantinou
,
M.
,
Reinhorn
,
A.
,
Nagarajaiah
,
S.
, and
Taylor
,
D.
,
2012
, “
Negative Stiffness Device for Seismic Protection of Structures
,”
J. Struct. Eng.
,
139
(
7
), pp.
1124
1133
.
36.
Ramlan
,
R.
,
Brennan
,
M.
,
Mace
,
B.
, and
Kovacic
,
I.
,
2010
, “
Potential Benefits of a Non-Linear Stiffness in an Energy Harvesting Device
,”
Nonlinear Dyn.
,
59
(
4
), pp.
545
558
.
37.
De Marneffe
,
B.
, and
Preumont
,
A.
,
2008
, “
Vibration Damping With Negative Capacitance Shunts: Theory and Experiment
,”
Smart Mater. Struct.
,
17
(
3
), p.
035015
.
38.
Ji
,
H.
,
Qiu
,
J.
,
Cheng
,
J.
, and
Inman
,
D.
,
2011
, “
Application of a Negative Capacitance Circuit in Synchronized Switch Damping Techniques for Vibration Suppression
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041015
.
39.
Chen
,
Y.
,
Huang
,
G.
, and
Sun
,
C.
,
2014
, “
Band Gap Control in an Active Elastic Metamaterial With Negative Capacitance Piezoelectric Shunting
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
061008
.
40.
Li
,
S.
,
Xu
,
J.
, and
Tang
,
J.
,
2017
, “
Adaptive Acoustic Metamaterial With Periodic Piezoelectric Network
,”
Proc. SPIE
,
10164
, pp.
101640N-1
101640N-10
.
You do not currently have access to this content.