The statistical size effect has generally been explained by the weakest-link model, which is valid if the failure of one representative volume element (RVE) of material, corresponding to one link, suffices to cause failure of the whole structure under the controlled load. As shown by the recent formulation of fishnet statistics, this is not the case for some architectured materials, such as nacre, for which one or several microstructural links must fail before reaching the maximum load or the structure strength limit. Such behavior was shown to bring about major safety advantages. Here, we show that it also alters the size effect on the median nominal strength of geometrically scaled rectangular specimens of a diagonally pulled fishnet. To derive the size effect relation, the geometric scaling of a rectangular fishnet is split into separate transverse and longitudinal scalings, for each of which a simple scaling rule for the median strength is established. Proportional combination of both then yields the two-dimensional geometric scaling and its size effect. Furthermore, a method to infer the material failure probability (or strength) distribution from the median size effect obtained from experiments or Monte Carlo simulations is formulated. Compared to the direct estimation of the histogram, which would require more than ten million test repetitions, the size effect method requires only a few (typically about six) tests for each of three or four structure sizes to obtain a tight upper bound on the failure probability distribution. Finally, comparisons of the model predictions and actual histograms are presented.

References

References
1.
Wang
,
R. Z.
,
Suo
,
Z.
,
Evans
,
A. G.
,
Yao
,
N.
, and
Aksay
,
I. A.
,
2001
, “
Deformation Mechanisms in Nacre
,”
J. Mater. Res.
,
16
(
9
), pp.
2485
2493
.
2.
Wei
,
X.
,
Filleter
,
T.
, and
Espinosa
,
H. D.
,
2015
, “
Statistical Shear Lag Model—Unraveling the Size Effect in Hierarchical Composites
,”
Acta Biomater.,
18
, pp.
206
212
.
3.
Verho
,
T.
,
Karppinen
,
P.
,
Gröschel
,
A. H.
, and
Ikkala
,
O.
,
2018
, “
Imaging Inelastic Fracture Processes in Biomimetic Nanocomposites and Nacre by Laser Speckle for Better Toughness
,”
Adv. Sci.
,
5
(
1
), p.
1700635
.
4.
Kamat
,
S.
,
Su
,
X.
,
Ballarini
,
R.
, and
Heuer
,
A. H.
,
2000
, “
Structural Basis for the Fracture Toughness of the Shell of the Conch Strombus Gigas
,”
Nature
,
405
(
6790
), p.
1036
.
5.
Williamson
,
D. M.
, and
Proud
,
W. G.
,
2011
, “
The Conch Shell as a Model for Tougher Composites
,”
Int. J. Mater. Eng. Innovat.
,
2
(
2
), pp.
149
164
.
6.
Zaheri
,
A.
,
Fenner
,
J. S.
,
Russell
,
B. P.
,
Restrepo
,
D.
,
Daly
,
M.
,
Wang
,
D.
,
Hayashi
,
C.
,
Meyers
,
M. A.
,
Zavattieri
,
P. D.
, and
Espinosa
,
H. D.
,
2018
, “
Revealing the Mechanics of Helicoidal Composites through Additive Manufacturing and Beetle Developmental Stage Analysis
,”
Adv. Funct. Mater.
,
28
(
33
), p.
1803073
.
7.
Rosewitz
,
J. A.
,
Choshali
,
H. A.
, and
Rahbar
,
N.
,
2019
, “
Bioinspired Design of Architected Cement-Polymer Composites
,”
Cem. Concr. Compos.
,
96
, pp.
252
265
.
8.
Huang
,
T.-H.
,
Chen
,
C.-S.
, and
Chang
,
S.-W.
,
2018
, “
Microcrack Patterns Control the Mechanical Strength in the Biocomposites
,”
Mater. Des.
,
140
, pp.
505
515
.
9.
Wu
,
K.
,
Zheng
,
Z.
,
Zhang
,
S.
,
He
,
L.
,
Yao
,
H.
,
Gong
,
X.
, and
Ni
,
Y.
,
2019
, “
Interfacial Strength-Controlled Energy Dissipation Mechanism and Optimization in Impact-Resistant Nacreous Structure
,”
Mater. Des.
,
163
, p.
107532
.
10.
Nukala
,
P. K. V. V.
, and
Simunovic
,
S.
,
2005
, “
A Continuous Damage Random Thresholds Model for Simulating the Fracture Behavior of Nacre
,”
Biomaterials
,
26
(
30
), pp.
6087
6098
.
11.
Abid
,
N.
,
Mirkhalaf
,
M.
, and
Barthelat
,
F.
,
2018
, “
Discrete-Element Modeling of Nacre-Like Materials: Effects of Random Microstructures on Strain Localization and Mechanical Performance
,”
J. Mech. Phys. Solids
,
112
, pp.
385
402
.
12.
Weibull
,
W.
,
1939
, “
The Phenomenon of Rupture in Solids
,”
Proc. Royal Swedish Inst. Eng. Res.,
153
, pp.
1
55
.
13.
Fisher
,
R. A.
, and
Tippett
,
L. H. C.
,
1928
, “
Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample
,”
Math. Proc. Cambridge Philos. Soc.
,
24
(
2
), pp.
180
190
.
14.
Daniels
,
H. E.
,
1945
, “
The Statistical Theory of the Strength of Bundles of Threads. I
,”
Proc. Roy. Soc. Lond. Math. Phys. Soc.
,
183
(
995
), pp.
405
435
.
15.
Luo
,
W.
, and
Bažant
,
Z. P.
,
2017
, “
Fishnet Statistics for Probabilistic Strength and Scaling of Nacreous Imbricated Lamellar Materials
,”
J. Mech. Phys. Solids
,
109
, pp.
264
287
.
16.
Luo
,
W.
, and
Bažant
,
Z. P.
,
2017
, “
Fishnet Model for Failure Probability Tail of Nacre-Like Imbricated Lamellar Materials
,”
Proc. Natl. Acad. Sci. USA
,
114
(
49
), pp.
12900
12905
.
17.
Salviato
,
M.
, and
Bažant
,
Z. P.
,
2014
, “
The Asymptotic Stochastic Strength of Bundles of Elements Exhibiting General Stress–Strain Laws
,”
Probabilist. Eng. Mech.
,
36
, pp.
1
7
.
18.
Bažant
,
Z. P.
, and
Planas
,
J.
,
1997
,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
, Vol.
16
.
CRC Press
,
Boca Raton, FL
.
19.
Bažant
,
Z. P.
,
2005
,
Scaling of Structural Strength
,
Elsevier
,
London
.
20.
Bažant
,
Z. P.
, and
Le
,
J.-L.
,
2017
,
Probabilistic Mechanics of Quasibrittle Structures: Strength, Lifetime, and Size Effect
,
Cambridge University Press
,
Cambridge, UK
.
21.
Bažant
,
Z. P.
,
Le
,
J.-L.
, and
Bažant
,
M. Z.
,
2009
, “
Scaling of Strength and Lifetime Probability Distributions of Quasibrittle Structures based on Atomistic Fracture Mechanics
,”
Proc. Natl. Acad. Sci. USA
,
106
(
28
), pp.
11484
11489
.
22.
Bažant
,
Z. P.
, and
Pang
,
S.-D.
,
2007
, “
Activation Energy Based Extreme Value Statistics and Size Effect in Brittle and Quasibrittle Fracture
,”
J. Mech. Phys. Solids
,
55
(
1
), pp.
91
131
.
23.
Le
,
J. L.
, and
Bažant
,
Z. P.
,
2009
, “
Finite Weakest Link Model With Zero Threshold for Strength Distribution of Dental Restorative Ceramics
,”
Dent. Mater
,
25
(
5
), pp.
641
648
.
24.
Le
,
J.-L.
,
Bažant
,
Z. P.
, and
Bažant
,
M. Z.
,
2011
, “
Unified Nano-Mechanics Based Probabilistic Theory of Quasibrittle and Brittle Structures: I. Strength, Static Crack Growth, Lifetime and Scaling
,”
J. Mech. Phys. Solids
,
59
(
7
), pp.
1291
1321
.
25.
Le
,
J.-L.
,
Ballarini
,
R.
, and
Zhu
,
Z.
,
2015
, “
Modeling of Probabilistic Failure of Polycrystalline Silicon Mems Structures
,”
J. Am. Ceram. Soc.
,
98
(
6
), pp.
1685
1697
.
26.
Luo
,
W.
, and
Bažant
,
Z. P.
,
2018
, “
Fishnet Model With Order Statistics for Tail Probability of Failure of Nacreous Biomimetic Materials With Softening Interlaminar Links
,”
J. Mech. Phys. Solids
,
121
, pp.
281
295
.
27.
Bažant
,
Z. P.
,
1984
, “
Size Effect in Blunt Fracture: Concrete, Rock, Metal
,”
J. Eng. Mech.
,
110
(
4
), pp.
518
535
.
28.
Bažant
,
Z. P.
, and
Kazemi
,
M. T.
,
1990
, “
Determination of Fracture Energy, Process Zone Longth and Brittleness Number From Size Effect, With Application to Rock and Conerete
,”
Int. J. Fracture
,
44
(
2
), pp.
111
131
.
29.
Bažant
,
Z. P.
, and
Li
,
Z.
,
1995
, “
Modulus of Rupture: Size Effect Due to Fracture Initiation in Boundary Layer
,”
J. Struct. Eng.
,
121
(
4
), pp.
739
746
.
30.
Bažant
,
Z. P.
,
2019
, “
Design of Quasibrittle Materials and Structures to Optimize Strength and Scaling at Probability Tail: An Apercu
,”
Proc. R. Soc. A
,
475
(
2224
), p.
20180617
.
31.
Turco
,
E.
,
Dell’Isola
,
F.
,
Cazzani
,
A.
, and
Rizzi
,
N. L.
,
2016
, “
Hencky-Type Discrete Model for Pantographic Structures: Numerical Comparison With Second Gradient Continuum Models
,”
Z. Angew. Math. Phys.
,
67
(
4
), p.
85
.
32.
Boutin
,
C.
,
Dell’Isola
,
F.
,
Giorgio
,
I.
, and
Placidi
,
L.
,
2017
, “
Linear Pantographic Sheets: Asymptotic Micro-Macro Models Identification
,”
Math. Mech. Complex Syst.
,
5
(
2
), pp.
127
162
.
33.
Harlow
,
D. G.
, and
Phoenix
,
S. L.
,
1978
, “
The Chain-of-Bundles Probability Model for the Strength of Fibrous Materials I: Analysis and Conjectures
,”
J. Compos. Mater.
,
12
(
2
), pp.
195
214
.
You do not currently have access to this content.