Experimental data have made it abundantly clear that the strength of polycrystalline silicon (poly-Si) microelectromechanical systems (MEMS) structures exhibits significant variability, which arises from the random distribution of the size and shape of sidewall defects created by the manufacturing process. Test data also indicated that the strength statistics of MEMS structures depends strongly on the structure size. Understanding the size effect on the strength distribution is of paramount importance if experimental data obtained using specimens of one size are to be used with confidence to predict the strength statistics of MEMS devices of other sizes. In this paper, we present a renewal weakest-link statistical model for the failure strength of poly-Si MEMS structures. The model takes into account the detailed statistical information of randomly distributed sidewall defects, including their geometry and spacing, in addition to the local random material strength. The large-size asymptotic behavior of the model is derived based on the stability postulate. Through the comparison with the measured strength distributions of MEMS specimens of different sizes, we show that the model is capable of capturing the size dependence of strength distribution. Based on the properties of simulated random stress field and random number of sidewall defects, a simplified method is developed for efficient computation of strength distribution of MEMS structures.

References

References
1.
Boyce
,
B. L.
,
Ballarini
,
R.
, and
Chasiotis
,
I.
,
2008
, “
An Argument for Proof Testing Brittle Microsystems in High-Reliability Applications
,”
J. Micromech. Microeng.
,
18
(
11
), p.
117001
.
2.
Jiang
,
L.
, and
Spearing
,
S. M.
,
2012
, “
A Reassessment of Materials Issues in Microelectromechanical Systems (MEMS)
,”
J. Indian Inst. Sci.
,
87
(
3
), p.
363
.
3.
Ballarini
,
R.
,
Kahn
,
H.
,
Heuer
,
A. H.
,
de Boer
,
M. P.
, and
Dugger
,
M. T.
,
2007
, “MEMS Structures for On-Chip Testing of Mechanical and Surface Properties of Thin Films,”
Comprehensive Structural Integrity
,
I.
Milne
,
R.
Ritchie
, and
B.
Karihaloo
, eds.,
Elsevier
,
New York
.
4.
Kahn
,
H.
,
Chen
,
L.
,
Ballarini
,
R.
, and
Heuer
,
A. H.
,
2006
, “
Mechanical Fatigue of Polysilicon: Effects of Mean Stress and Stress Amplitude
,”
Acta Mater.
,
54
(
3
), pp.
667
678
.
5.
Ballarini
,
R.
,
1998
, “
The Role of Mechanics in Microelectromechanical Systems (MEMS) Technology
,”
Air Force Research Laboratory
,
Dayton, OH
, Technical Report No. AFRL-ML-WP-TR-1998-4209.
6.
Espinosa
,
H. D.
,
Peng
,
B.
,
Moldovan
,
N.
,
Friedmann
,
T. A.
,
Xiao
,
X.
,
Mancini
,
D. C.
,
Auciello
,
O.
,
Carlisle
,
J.
, and
Zorman
,
C. A.
,
2005
, “
A Comparison of Mechanical Properties of Three MEMS Materials-Silicon Carbide, Ultrananocrystalline Diamond, and Hydrogen-Free Tetrahedral Amorphous Carbon (Ta-C)
,”
11th International Conference on Fracture
, Vol.
5
,
A.
Carpinteri
, ed.,
Turin, Italy
,
Mar. 20–25
, pp.
3806
3811
.
7.
Fitzgerald
,
A. M.
,
Pierce
,
D. M.
,
Huigens
,
B. M.
, and
White
,
C. D.
,
2009
, “
A General Methodology to Predict the Reliability of Single-Crystal Silicon MEMS Devices
,”
J. Microelectromech. Syst.
,
18
(
4
), pp.
962
970
.
8.
Reedy
,
E. D.
, Jr.
,
2011
, “
Singular Stress Fields at the Intersection of a Grain Boundary and a Stress-Free Edge in a Columnar Polycrystal
,”
ASME J. Appl. Mech.
,
78
, p.
014502
.
9.
Reedy
,
E. D., Jr.
,
Boyce
,
B. L.
,
Foulk
,
J. W., III
,
Field
,
R. V., Jr.
,
de Boer
,
M. P.
, and
Hazra
,
S. S.
,
2011
, “
Predicting Fracture in Micrometer-Scale Polycrystalline Silicon MEMS Structures
,”
J. Microelectromech. Syst.
,
20
(
4
), pp.
922
932
.
10.
Weibull
,
W.
,
1939
, “
The Phenomenon of Rupture in Solids
,”
Proc. Royal Sweden Inst. Engrg. Res.
,
153
, pp.
1
55
.
11.
Weibull
,
W.
,
1951
, “
A Statistical Distribution Function of Wide Applicability
,”
ASME J. Appl. Mech.
,
153
(
18
), pp.
293
297
.
12.
Fisher
,
R. A.
, and
Tippett
,
L. H. C.
,
1928
, “
Limiting Form of the Frequency Distribution the Largest and Smallest Number of a Sample
,”
Proc. Cambridge Philos. Soc.
,
24
, pp.
180
190
.
13.
Gumbel
,
E. J.
,
1958
,
Statistics of Extremes
,
Columbia University Press
,
New York
.
14.
Espinosa
,
H. D.
,
Peng
,
B.
,
Moldovan
,
N.
,
Friedmann
,
T. A.
,
Xiao
,
X.
,
Mancini
,
D. C.
,
Auciello
,
O.
,
Carlisle
,
J.
, and
Zorman
,
C. A.
,
2005
, “
A Comparison of Mechanical Properties of Three MEMS Materials–Silicon Carbide, Ultrananocrystalline Diamond, and Hydrogen-Free Tetrahedral Amorphous Carbon (Ta-C)
,”
11th International Conference on Fracture
,
Turin, Italy
,
Mar. 20–25
,
A.
Carpinteri
, ed., Vol.
5
, pp.
3806
3811
.
15.
Boyce
,
B. L.
,
Grazier
,
J. M.
,
Buchheit
,
T. E.
, and
Shaw
,
M. J.
,
2007
, “
Strength Distributions in Polycrystalline Silicon MEMS
,”
J. Microelectromech. Syst.
,
16
(
2
), pp.
179
190
.
16.
Le
,
J.-L.
,
Ballarini
,
R.
, and
Zhu
,
Z.
,
2015
, “
Modeling of Probabilistic Failure of Polycrystalline Silicon MEMS Structures
,”
J. Amer. Cer. Soc.
,
98
(
6
), pp.
1685
1697
.
17.
Saleh
,
M. E.
,
Beuth
,
J. L.
, and
de Boer
,
M. P.
,
2014
, “
Validated Prediction of the Strength Size Effect in Polycrystalline Silicon Using the Three-Parameter Weibull Function
,”
J. Amer. Cer. Soc.
,
97
(
12
), pp.
3982
3990
.
18.
Pang
,
S.-D.
,
Bažant
,
Z. P.
, and
Le
,
J.-L.
,
2008
, “
Statistics of Strength of Ceramics: Finite Weakest Link Model and Necessity of Zero Threshold
,”
Int. J. Frac.
,
154
, pp.
131
145
.
19.
Le
,
J.-L.
,
Bažant
,
Z. P.
, and
Bazant
,
M. Z.
,
2011
, “
Unified Nano-Mechanics Based Probabilistic Theory of Quasibrittle and Brittle Structures: I. Strength, Crack Growth, Lifetime and Scaling
,”
J. Mech. Phys. Solids
,
59
, pp.
1291
1321
.
20.
Bažant
,
Z. P.
, and
Le
,
J.-L.
,
2017
,
Probabilistic Mechanics of Quasibrittle Structures: Strength, Lifetime, and Size Effect
,
Cambridge University Press
,
Cambridge, UK
.
21.
Xu
,
Z.
, and
Le
,
J.-L.
,
2017
, “
A First Passage Model for Probabilistic Failure of Polycrystalline Silicon MEMS Structures
,”
J. Mech. Phys. Solids
,
99
, pp.
225
241
.
22.
Bažant
,
Z. P.
, and
Ohtsubo
,
H.
,
1977
, “
Stability Conditions for Propagation of a System of Cracks in a Brittle Solid
,”
Mech. Res. Comm.
,
4
(
5
), pp.
353
366
.
23.
Nemat-Nasser
,
S.
,
Keer
,
L. M.
, and
Parihar
,
K. S.
,
1978
, “
Unstable Growth of Thermally Induced Interacting Cracks in Brittle Solids
,”
Int. J. Solids Struct.
,
14
(
6
), pp.
409
430
.
24.
Bažant
,
Z. P.
,
Salviato
,
M.
,
Chau
,
V. T.
,
Viswanathan
,
H.
, and
Zubelewicz
,
A.
,
2014
, “
Why Fracking Works
,”
J. Appl. Mech. ASME
,
81
, p.
101010
(10 pages).
25.
Carpinteri
,
A.
,
1987
, “
Stress-Singularity and Generalized Fracture Toughness at the Vertex of Reentrant Corners
,”
Engrg. Frac. Mech.
,
26
, pp.
143
155
.
26.
Seweryn
,
A.
,
1994
, “
Brittle Fracture Criterion for Structures with Sharp Notches
,”
Engrg. Fract. Mech.
,
47
, pp.
673
681
.
27.
Dunn
,
M. L.
,
Suwito
,
W.
, and
Cunningham
,
S. J.
,
1997
, “
Fracture Initiation at Sharp Notches: Correlation Using Critical Stress Intensities
,”
Int. J. Solids Struct.
,
34
(
29
), pp.
3873
3883
.
28.
Leguillon
,
D.
,
2002
, “
Strength or Toughness? A Criterion for Crack Onset at a Notch
,”
Eur. J. Mech., A/Solids
,
21
, pp.
61
72
.
29.
Gomez
,
F. J.
, and
Elices
,
M.
,
2003
, “
A Fracture Criterion for Sharp V-Notched Samples
,”
Int. J. Frac.
,
123
(
3–4
), pp.
163
175
.
30.
Le
,
J.-L.
,
Pieuchot
,
M.
, and
Ballarini
,
R.
,
2014
, “
Effect of Stress Singularity Magnitude on Scaling of Strength of Quasibrittle Structures
,”
J. Engrg. Mech. ASCE
,
140
(
5
), p.
04014011
.
31.
Bažant
,
Z. P.
,
Le
,
J.-L.
, and
Bazant
,
M. Z.
,
2009
, “
Scaling of Strength and Lifetime Distributions of Quasibrittle Structures Based on Atomistic Fracture Mechanics
,”
Proc. Nat’l. Acad. Sci., USA
,
106
, pp.
11484
11489
.
32.
Cox
,
D. R.
,
1967
,
Renewal Theory
,
Vol. 1
,
Methuen & Co
,
London
.
33.
Ang
,
A. H. S.
, and
Tang
,
W. H.
,
1984
,
Probability Concepts in Engineering Planning and Design. Vol II. Decision, Risk and Reliability
,
J. Wiley
,
New York
.
34.
Kulkarni
,
V. G.
,
2016
,
Modeling and Analysis of Stochastic Systems
,
2 ed.
,
Chapman and Hall/CRC
,
Boca Raton
.
35.
Kotz
,
S.
, and
Nadarajah
,
S.
,
2000
,
Extreme Value Distributions: Theory and Applications
,
Imperial College Press
,
London
.
36.
Vanmarcke
,
E.
,
2010
,
Random Fields Analysis and Synthesis
,
World Scientific Publishers
,
Singapore
.
37.
Hazra
,
S. S.
,
Baker
,
M. S.
,
Beuth
,
J. L.
, and
de Boer
,
M. P.
,
2009
, “
Demonstration of an In-Situ On-Chip Tester
,”
J. Micromech. Microeng.
,
19
, p.
082001
(5 pp.).
38.
Sniegowski
,
J. J.
, and
de Boer
,
M. P.
,
2000
, “
IC-Compatible Polysilicon Surface Micromachining
,”
Annu. Rev. Mater. Sci.
,
30
, pp.
299
333
.
39.
Yasutake
,
K.
,
Iwata
,
M.
,
Yoshii
,
K.
,
Umeno
,
M.
, and
Kawabe
,
H.
,
1986
, “
Crack Healing and Fracture Strength of Silicon Crystals
,”
J. Mater. Sci.
,
21
(
6
), pp.
2185
2192
.
40.
Bažant
,
Z. P.
,
2004
, “
Scaling Theory of Quaisbrittle Structural Failure
,”
Proc. Nat’l. Acad. Sci., USA
,
101
(
37
), pp.
13400
13407
.
41.
Bažant
,
Z. P.
,
2005
,
Scaling of Structural Strength
,
Elsevier
,
London
.
42.
Le
,
J.-L.
,
Cannone Falchetto
,
A.
, and
Marasteanu
,
M. O.
,
2013
, “
Determination of strength distribution of quasibrittle structures from mean size effect analysis
,”
Mech. Mater.
,
66
, pp.
79
87
.
This content is only available via PDF.
You do not currently have access to this content.