Conventional energy absorber usually employs stubby thin-walled structures. Compared with the limited number of stubby thin-walled structures, an equipment has a large number of slender thin-walled structures that has the potential to be used for energy absorption purpose as well. Therefore, improving the energy absorption capacity of these slender thin-walled structures can significantly benefit the crashworthiness of the equipment. However, these slender structures are inclined to deform in Euler buckling mode, which greatly limits their application for energy absorption. In this paper, kirigami approach combined with welding technology is adopted to avoid the Euler buckling mode of a slender cruciform. Both finite element simulations and experiments demonstrated that the proposed approach can trigger a desirable progressive collapse mode and thus improve the energy absorption by around 155.22%, compared with the conventional cruciform. Furthermore, parametric studies related to the kirigami pattern and global slenderness ratio (GSR) are conducted to investigate the improvement of this proposed approach on the energy absorption and the maximum critical value of GSR.

References

References
1.
Lu
,
G.
, and
Yu
,
T.
,
2003
,
Energy Absorption of Structures and Materials
,
Elsevier
,
New York
.
2.
Wierzbicki
,
T.
, and
Abramowicz
,
W.
,
1983
, “
On the Crushing Mechanics of Thin-Walled Structures
,”
ASME J. Appl. Mech.
,
50
(
4a
), pp.
727
734
.
3.
Abramowicz
,
W.
, and
Wierzbicki
,
T.
,
1989
, “
Axial Crushing of Multicorner Sheet Metal Columns
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
113
120
.
4.
Chen
,
Z.
,
Wu
,
T.
,
Nian
,
G.
,
Shan
,
Y.
,
Liang
,
X.
,
Jiang
,
H.
, and
Qu,
S.
,
2018
, “
Ron Resch Origami Pattern Inspired Energy Absorption Structures
,”
ASME J. Appl. Mech.
,
86
(
1
), p.
011005
.
5.
Zhang
,
X. W.
, and
Yu
,
T. X.
,
2009
, “
Energy Absorption of Pressurized Thin-Walled Circular Tubes Under Axial Crushing
,”
Int. J. Mech. Sci.
,
51
(
5
), pp.
335
349
.
6.
Reddy
,
T. Y.
, and
Wall
,
R. J.
,
1988
, “
Axial Compression of Foam-Filled Thin-Walled Circular Tubes
,”
Int. J. Impact Eng.
,
7
(
2
), pp.
151
166
.
7.
Wang
,
W.
, and
Qiu
,
X.
,
2017
, “
An Analytical Study for Global Buckling of Circular Tubes Under Axial and Oblique Compression
,”
Int. J. Mech. Sci.
,
126
, pp.
120
129
.
8.
Jensen
,
Ø
,
Langseth
,
M.
, and
Hopperstad
,
O. S.
,
2004
, “
Experimental Investigations on the Behaviour of Short to Long Square Aluminium Tubes Subjected to Axial Loading
,”
Int. J. Impact Eng.
,
30
(
8–9
), pp.
973
1003
.
9.
Al Galib
,
D.
, and
Limam
,
A.
,
2004
, “
Experimental and Numerical Investigation of Static and Dynamic Axial Crushing of Circular Aluminum Tubes
,”
Thin Wall. Struct.
,
42
(
8
), pp.
1103
1137
.
10.
Zhou
,
C.
,
Jiang
,
L.
,
Tian
,
K.
,
Bi
,
X.
, and
Wang
,
B.
,
2017
, “
Origami Crash Boxes Subjected to Dynamic Oblique Loading
,”
ASME J. Appl. Mech.
,
84
(
9
), p.
091006
.
11.
Chung
,
K. Y. S.
,
Nurick
,
G. N.
, and
Starke
,
R. A.
,
2008
, “
The Energy Absorption Characteristics of Double-Cell Tubular Profiles
,”
Lat. Am. J. Solids Struct.
,
5
(
4
), pp.
289
317
.
12.
Arnold
,
B.
, and
Altenhof
,
W.
,
2004
, “
Experimental Observations on the Crush Characteristics of AA6061 T4 and T6 Structural Square Tubes With and Without Circular Discontinuities
,”
Int. J. Crashworthiness
,
9
(
1
), pp.
73
87
.
13.
Marjanishvili
,
S. M.
,
2004
, “
Progressive Analysis Procedure for Progressive Collapse
,”
J. Perform. Constr. Facil.,
18
(
2
), pp.
79
85
.
14.
Yuen
,
S. C.
, and
Nurick
,
G. N.
,
2008
, “
The Energy-Absorbing Characteristics of Tubular Structures With Geometric and Material Modifications: An Overview
,”
ASME Appl. Mech. Rev.
,
61
(
2
), p.
020802
.
15.
Ma
,
J.
, and
You
,
Z.
,
2014
, “
Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern-Part I: Geometry and Numerical Simulation
,”
ASME J. Appl. Mech. Trans.
,
81
(
1
), p.
011003
.
16.
Guillow
,
S. R.
,
Lu
,
G.
, and
Grzebieta
,
R. H.
,
2001
, “
Quasi-static Axial Compression of Thin-Walled Circular Aluminium Tubes
,”
Int. J. Mech. Sci.
,
43
(
9
), pp.
2103
2123
.
17.
Andrews
,
K. R. F.
,
England
,
G. L.
, and
Ghani
,
E.
,
1983
, “
Classification of the Axial Collapse of Cylindrical Tubes Under Quasi-Static Loading
,”
Int. J. Mech. Sci.
,
25
(
9
), pp.
687
696
.
18.
Agrawal
,
D.
,
Rawat
,
S.
, and
Upadhyay
,
A. K.
,
2016
, “
Crashworthiness of Circular Tubes with Structurally Graded Corrugations
,”
International Mobility Conference
,
MNNIT, Allahabad
.
19.
Reddy
,
S.
,
Abbasi
,
M.
, and
Fard
,
M.
,
2015
, “
Multi-Cornered Thin-Walled Sheet Metal Members for Enhanced Crashworthiness and Occupant Protection
,”
Thin-Walled Struct.
,
94
, pp.
56
66
.
20.
Jandaghi
,
S. V.
, and
Marzbanrad
,
J.
,
2012
, “
Analytical and Experimental Studies on Quasi-Static Axial Crush Behavior of Thin-Walled Tailor-Made Aluminum Tubes
,”
Thin Wall. Struct.
,
60
, pp.
24
37
.
21.
Baleh
,
R.
,
Abdul–Latif
,
A.
,
Menouer
,
A.
, and
Razafindramary
,
D.
,
2018
, “
New Experimental Investigation of Non-Conventional Dynamic Biaxial Plastic Buckling of Square Aluminum Tubular Structures
,”
Int. J. Impact Eng.
,
122
, pp.
333
345
.
22.
Baroutaji
,
A.
,
Sajjia
,
M.
, and
Olabi
,
A.-G.
,
2017
, “
On the Crashworthiness Performance of Thin-Walled Energy Absorbers: Recent Advances and Future Developments
,”
Thin Wall. Struct.
,
118
, pp.
137
163
.
23.
Hui
,
D.
,
1986
, “
Design of Beneficial Geometric Imperfections for Elastic Collapse of Thin-Walled Box Columns
,”
Int. J. Mech. Sci.
,
28
(
3
), pp.
163
172
.
24.
Kim
,
H.-S.
,
2001
, “
Analysis of Crash Response of Aluminium Foam-Filled Front Side Rail of a Passenger Car
,”
Int. J. Crashworthiness
,
6
(
2
), pp.
189
208
.
25.
Airoldi
,
A.
, and
Janszen
,
G.
,
2005
, “
A Design Solution for a Crashworthy Landing Gear With a New Triggering Mechanism for the Plastic Collapse of Metallic Tubes
,”
Aerosp. Sci. Technol.
,
9
(
5
), pp.
445
455
.
26.
El-Hage
,
H.
,
Mallick
,
P. K.
, and
Zamani
,
N.
,
2005
, “
A Numerical Study on the Quasi-Static Axial Crush Characteristics of Square Aluminum Tubes With Chamfering and Other Triggering Mechanisms
,”
Int. J. Crashworthiness
,
10
(
2
), pp.
183
196
.
27.
Ferdynus
,
M.
,
Kotełko
,
M.
, and
Kral
,
J.
,
2018
, “
Energy Absorption Capability Numerical Analysis of Thin-Walled Prismatic Tubes With Corner Dents Under Axial Impact
,”
Eksploatacja i Niezawodnosc-Maintenance and Reliability
,
20
(
2
), pp.
252
259
.
28.
Lee
,
S.
,
Hahn
,
C.
,
Rhee
,
M.
, and
Oh
,
J. E.
,
1999
, “
Effect of Triggering on the Energy Absorption Capacity of Axially Compressed Aluminum Tubes
,”
Mater. Des.
,
20
(
1
), pp.
31
40
.
29.
Kormi
,
K.
,
Webb
,
D. C.
, and
Montague
,
P.
,
1993
, “
Crash Behaviour of Circular Tubes With Large Side Openings
,”
Int. J. Mech. Sci.
,
35
(
3
), pp.
193
208
.
30.
Darvizeh
,
A.
,
Darvizeh
,
M.
,
Ansari
,
R.
, and
Meshkinzar
,
A.
,
2014
, “
Analytical and Experimental Investigations Into the Controlled Energy Absorption Characteristics of Thick-Walled Tubes With Circumferential Grooves
,”
J. Mech. Sci. Technol.
,
28
(
10
), pp.
4199
4212
.
31.
Salehghaffari
,
S.
,
Tajdari
,
M.
,
Panahi
,
M.
, and
Mokhtarnezhad
,
F.
,
2010
, “
Attempts to Improve Energy Absorption Characteristics of Circular Metal Tubes Subjected to Axial Loading
,”
Thin Wall. Struct.
,
48
(
6
), pp.
379
390
.
32.
Darvizeh
,
A.
,
Darvizeh
,
M.
,
Ansari
,
R.
, and
Meshkinzar
,
A.
,
2013
, “
Effect of Low Density, Low Strength Polyurethane Foam on the Energy Absorption Characteristics of Circumferentially Grooved Thick-Walled Circular Tubes
,”
Thin Wall. Struct.
,
71
, pp.
81
90
.
33.
Mohamed
,
M. N.
, and
Kumar
,
A. P.
,
2017
, “
New Insight to Improve Energy Absorption Characteristics of Long Circular Tubes With Stiffeners as Controllable Energy-Dissipating Devices
,”
Procedia Eng.
,
173
, pp.
1399
1406
.
34.
Gupta
,
N. K.
, and
Gupta
,
S. K.
,
1993
, “
Effect of Annealing, Size and Cut-Outs on Axial Collapse Behaviour of Circular Tubes
,”
Int. J. Mech. Sci.
,
35
(
7
), pp.
597
613
.
35.
Gupta
,
N. K.
,
1998
, “
Some Aspects of Axial Collapse of Cylindrical Thin-Walled Tubes
,”
Thin Wall. Struct.
,
32
(
1–3
), pp.
111
126
.
36.
Fan
,
Z.
,
Lu
,
G.
, and
Liu
,
K.
,
2013
, “
Quasi-static Axial Compression of Thin-Walled Tubes With Different Cross-Sectional Shapes
,”
Eng. Struct.
,
55
, pp.
80
89
.
37.
Xu
,
F.
,
Zhang
,
X.
, and
Zhang
,
H.
,
2018
, “
A Review on Functionally Graded Structures and Materials for Energy Absorption
,”
Eng. Struct.
,
171
(
15
), pp.
309
325
.
38.
Reid
,
S. R.
, and
Reddy
,
T. Y.
,
1986
, “
Static and Dynamic Crushing of Tapered Sheet Metal Tubes of Rectangular Cross-Section
,”
Int. J. Mech. Sci.
,
28
(
9
), pp.
623
637
.
39.
Yin
,
H.
,
Fang
,
H.
,
Xiao
,
Y.
,
Wen
,
G.
, and
Qing
,
Q.
,
2015
, “
Multi-Objective Robust Optimization of Foam-Filled Tapered Multi-Cell Thin-Walled Structures
,”
Struct. Multidiscip. Optim.,
52
(
6
), pp.
1051
1067
.
40.
Li
,
G.
,
Xu
,
F.
,
Sun
,
G.
, and
Li
,
Q.
,
2015
, “
A Comparative Study on Thin-Walled Structures With Functionally Graded Thickness (FGT) and Tapered Tubes Withstanding Oblique Impact Loading
,”
Int. J. Impact Eng.
,
77
, pp.
68
83
.
41.
Chen
,
D.-H.
, and
Masuda
,
K.
,
2011
, “
Crushing Behavior of Thin-Walled Hexagonal Tubes with Partition Plates
,”
ISRN Mechanical Engineering
,
2011
, p.
503973
.
42.
Zhou
,
C.
,
Ming
,
S.
,
Li
,
T.
,
Wang
,
B.
, and
Ren
,
M.
,
2018
, “
The Energy Absorption Behavior of Cruciforms Designed by Kirigami Approach
,”
ASME J. Appl. Mech.
,
85
(
12
), p.
121008
.
43.
ABAQUS
,
2013
,
ABAQUS Analysis User’s Guide,Documentation Version 6.13
,
Dassault Systems Simulia Corp
,
Providence, RI
.
44.
Haris
,
S.
, and
Amdahl
,
J.
,
2012
, “
Crushing Resistance of a Cruciform and its Application to Ship Collision and Grounding
,”
Ships Offshore Struct.
,
7
(
2
), pp.
185
195
.
45.
Peroni
,
L.
,
Avalle
,
M.
, and
Belingardi
,
G.
,
2009
, “
Comparison of the Energy Absorption Capability of Crash Boxes Assembled by Spot-Weld and Continuous Joining Techniques
,”
Int. J. Impact Eng.
,
36
(
3
), pp.
498
511
.
46.
You
,
D.
,
Gao
,
X.
, and
Katayama
,
S.
,
2014
, “
Multisensor Fusion System for Monitoring High-Power Disk Laser Welding Using Support Vector Machine
,”
IEEE Trans. Ind. Inf.
,
10
(
2
), pp.
1285
1295
.
47.
Zhou
,
C.
,
Ming
,
S.
,
Xia
,
C.
,
Wang
,
B.
,
Bi
,
X.
,
Hao
,
P.
, and
Ren
,
M.
,
2018
, “
The Energy Absorption of Rectangular and Slotted Windowed Tubes Under Axial Crushing
,”
Int. J. Mech. Sci.
,
141
, pp.
89
100
.
48.
Pan
,
B.
,
Qian
,
K.
,
Xie
,
H.
, and
Asundi
,
A.
,
2009
, “
Two-Dimensional Digital Image Correlation for In-Plane Displacement and Strain Measurement: A Review
,”
Meas. Sci. Technol.
,
20
(
6
), p.
062001
.
You do not currently have access to this content.