We propose a modeling strategy to predict the mechanical response of porous solids to imposed multiaxial strain histories. A coarse representation of the microstructure of a porous material is obtained by subdividing a volume element into cubic cells by a regular tessellation; some of these cells are modeled as a plastically incompressible elastic-plastic solid, representing the parent material, while the remaining cells, representing the pores, are treated as a weak and soft compressible solid displaying densification behavior at large compressive strains. The evolution of homogenized deviatoric and hydrostatic stress is explored for different porosities by finite element simulations. The predictions are found in good agreement with previously published numerical studies in which the microstructural geometry was explicitly modeled.

References

References
1.
Aubertin
,
M.
, and
Li
,
L.
,
2004
, “
A Porosity-Dependent Inelastic Criterion for Engineering Materials
,”
Int. J. Plast.
,
20
(
12
), pp.
2179
2208
.
2.
Nahshon
,
K.
, and
Hutchinson
,
J. W.
,
2008
, “
Modification of the Gurson Model for Shear Failure
,”
Eur. J. Mech. A/Solids
,
27
(
1
), pp.
1
17
.
3.
Cocks
,
A. C. F.
,
2001
, “
Constitutive Modelling of Powder Compaction and Sintering
,”
Prog. Mater. Sci.
,
46
(
3–4
), pp.
201
229
.
4.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I-Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.
5.
Perrin
,
G.
, and
Leblond
,
J.-B.
,
2000
, “
Accelerated Void Growth in Porous Ductile Solids Containing Two Populations of Cavities
,”
Int. J. Plast.
,
16
(
1
), pp.
91
120
.
6.
Khan
,
A. S.
, and
Zhang
,
H.
,
2000
, “
Mechanically Alloyed Nanocrystalline Iron and Copper Mixture: Behavior and Constitutive Modeling Over a Wide Range of Strain Rates
,”
Int. J. Plast.
,
16
(
12
), pp.
1477
1492
.
7.
Idiart
,
M. I.
,
Danas
,
K.
, and
Castañeda
,
P. P.
,
2006
, “
Second-Order Theory for Nonlinear Composites and Application to Isotropic Constituents
,”
C. R Mecanique
,
334
(
10
), pp.
575
581
.
8.
Danas
,
K.
, and
Aravas
,
N.
,
2012
, “
Numerical Modeling of Elastic-Plastic Porous Materials With Void Shape Effects at Finite Deformations
,”
Compos. Part B
,
43
(
6
), pp.
2544
2559
.
9.
Danas
,
K.
,
Idiart
,
M. I.
, and
Castañeda
,
P. P.
,
2008
, “
A Homogenization-Based Constitutive Model for Isotropic Viscoplastic Porous Media
,”
Int. J. Solids Struct.
,
45
(
11–12
), pp.
3392
3409
.
10.
Danas
,
K.
,
Idiart
,
M. I.
, and
Castañeda
,
P. P.
,
2008
, “
A Homogenization-Based Constitutive Model for Two-Dimensional Viscoplastic Porous Media
,”
C. R Mecanique
,
336
(
1–2
), pp.
79
90
.
11.
Shen
,
W. Q.
,
Shao
,
J. F.
,
Dormieux
,
L.
, and
Kondo
,
D.
,
2012
, “
Approximate Criteria for Ductile Porous Materials Having a Green Type Matrix: Application to Double Porous Media
,”
Comput. Mater. Sci.
,
62
, pp.
189
194
.
12.
Bilger
,
N.
,
Auslender
,
F.
,
Bornert
,
M.
,
Moulinec
,
H.
, and
Zaoui
,
A.
,
2007
, “
Bounds and Estimates for the Effective Yield Surface of Porous Media With a Uniform or a Nonuniform Distribution of Voids
,”
Eur. J. Mech.
,
26
(
5
), pp.
810
836
.
13.
McElwain
,
D. L. S.
,
Roberts
,
A. P.
, and
Wilkins
,
A. H.
,
2006
, “
Yield Criterion of Porous Materials Subjected to Complex Stress States
,”
Acta Mater.,
54
(
8
), pp.
1995
2002
.
14.
McElwain
,
D. L. S.
,
Roberts
,
A. P.
, and
Wilkins
,
A. H.
2006
,
Yield Functions for Porous Materials With Cubic Symmetry Using Different Definitions of Yield
.
Adv. Eng. Mater.
,
8
(
9
), pp.
870
876
.
15.
Öchsner
,
A.
, and
Mishuris
,
G.
,
2009
, “
Modelling of the Multiaxial Elasto-Plastic Behaviour of Porous Metals With Internal Gas Pressure
,”
Finite Elem. Anal. Des.
,
45
(
2
), pp.
104
112
.
16.
Mbiakop
,
A.
,
Constantinescu
,
A.
, and
Danas
,
K.
,
2015
, “
On Void Shape Effects of Periodic Elasto-Plastic Materials Subjected to Cyclic Loading
,”
Eur. J. Mech. A/Solids
,
49
, pp.
481
499
.
17.
Qidwai
,
M. A.
,
Entchev
,
P. B.
,
Lagoudas
,
D. C.
, and
Degiorgi
,
V. G.
,
2001
, “
Modeling of the Thermomechanical Behavior of Porous Memory Alloys
,”
Int. J. Solids Struct.
,
38
(
48–49
), pp.
8653
8671
.
18.
Pastor
,
J.
,
Francescato
,
P.
,
Trillat
,
M.
,
Loute
,
E.
, and
Rousselier
,
G.
,
2004
, “
Ductile Failure of Cylindrically Porous Materials. Part II: Other Cases of Symmetry
,”
Eur. J. Mech. A/Solids
,
23
(
2
), pp.
191
201
.
19.
Segurado
,
J.
,
Parteder
,
E.
,
Plankensteiner
,
A. F.
, and
Böhm
,
H. J.
,
2002
, “
Micromechanical Studies of the Densification of Porous Molybdenum
,”
Mater. Sci. Eng. A
,
333
(
1–2
), pp.
270
278
.
20.
Gărăjeu
,
M.
,
Michel
,
J. C.
, and
Suquet
,
P.
,
2000
, “
A Micromechanical Approach of Damage in Viscoplastic Materials by Evolution in Size, Shape and Distribution of Voids
,”
Comput. Methods Appl. Mech. Eng.
,
183
(
3–4
), pp.
223
246
.
21.
Kim
,
J.
,
Gao
,
X.
, and
Srivatsan
,
T. S.
,
2004
, “
Modeling of Void Growth in Ductile Solids: Effects of Stress Triaxiality and Initial Porosity
,”
Eng. Fract. Mech.
71
(
3
), pp.
379
400
.
22.
Siegkas
,
P.
,
Petrinic
,
N.
, and
Tagarielli
,
V. L.
,
2011
, “
The Compressive Response of a Titanium Foam at Low and High Strain Rates
,”
J. Mater. Sci.
,
46
(
8
), pp.
2741
2747
.
23.
Siegkas
,
P.
,
Petrinic
,
N.
, and
Tagarielli
,
V. L.
,
2014
, “
Modelling Stochastic Foam Geometries for FE Simulations Using 3D Voronoi Cells
,”
Proc. Mater. Sci.
,
4
, pp.
221
226
.
24.
Siegkas
,
P.
,
Petrinic
,
N.
, and
Tagarielli
,
V. L.
,
2016
, “
Measurements and Micro-Mechanical Modelling of the Response of Sintered Titanium Foams
,”
J. Mech. Behav. Biomed. Mater.
57
, pp.
365
375
.
25.
Chen
,
Z.
,
Wang
,
X.
,
Giuliani
,
F.
, and
Atkinson
,
A.
,
2015
, “
Microstructural Characteristics and Elastic Modulus of Porous Solids
,”
Acta Mater.
,
89
, pp.
268
277
.
26.
Panico
,
M.
, and
Brinson
,
L. C.
,
2008
, “
Computational Modeling of Porous Shape Memory Alloys
,”
Int. J. Solids Struct.
,
45
(
21
), pp.
5613
5626
.
27.
Fritzen
,
F.
,
Böhlke
,
T.
, and
Schnack
,
E.
,
2009
, “
Periodic Three-Dimensional Mesh Generation for Crystalline Aggregates Based on Voronoi Tessellations
,”
Comput. Mech.
,
43
(
5
), pp.
701
713
.
28.
Fritzen
,
F.
,
Forest
,
S.
,
Bohlke
,
T.
,
Kondo
,
D.
, and
Kanit
,
T.
,
2012
, “
Computational Homogenization of Elastic-Plastic Porous Metals
,”
Int. J. Plast.
,
29
, pp.
102
119
.
29.
Shan
,
Z.
, and
Gokhale
,
A. M.
,
2001
, “
Micromechanics of Complex Three-Dimensional Microstructures
,”
Acta Mater.
,
49
(
11
), pp.
2001
2015
.
30.
Shen
,
H.
, and
Brinson
,
L. C.
,
2006
, “
A Numerical Investigation of the Effect of Boundary Conditions and Representative Volume Element Size for Porous Titanium
,”
J. Mech. Mater. Struct.
,
1
(
7
), pp.
1179
1204
.
31.
Shen
,
H.
, and
Brinson
,
L. C.
,
2007
, “
Finite Element Modeling of Porous Titanium
,”
Int. J. Solids Struct.
,
44
(
1
), pp.
320
335
.
32.
Shen
,
H.
,
Oppenheimer
,
S. M.
,
Dunand
,
D. C.
, and
Brinson
,
L. C.
,
2006
, “
Numerical Modeling of Pore Size and Distribution in Foamed Titanium
,”
Mech. Mater.
,
38
(
8–10
), pp.
933
944
.
33.
Bilger
,
N.
,
Auslender
,
F.
,
Bornert
,
M.
,
Michel
,
J.-C.
,
Moulinec
,
H.
,
Suquet
,
P.
, and
Zaoui
,
A.
,
2005
, “
Effect of a Nonuniform Distribution of Voids on the Plastic Response of Voided Materials: A Computational and Statistical Analysis
,”
Int. J. Solids Struct.
,
42
(
2
), pp.
517
538
.
34.
Maîtrejean
,
G.
,
Terriault
,
P.
, and
Brailovski
,
V.
,
2013
, “
Density Dependence of the Superelastic Behavior of Porous Shape Memory Alloys: Representative Volume Element and Scaling Relation Approaches
,”
Comput. Mater. Sci.
,
77
, pp.
93
101
.
35.
Degiorgi
,
V. G.
, and
Qidwai
,
M. A.
,
2002
, “
A Computational Mesoscale Evaluation of Material Characteristics of Porous Shape Memory Alloys
,”
Smart Mater. Struct.
,
11
(
3
), pp.
435
443
.
36.
Simoneau
,
C.
,
Terriault
,
P.
,
Rivard
,
J.
, and
Brailovski
,
V.
,
2014
, “
Modeling of Metallic Foam Morphology Using the Representative Volume Element Approach: Development and Experimental Validation
,”,
Int. J. Solids Struct.
,
51
(
21–22
), pp.
3633
3641
.
37.
Zacharopoulos
,
P.
, and
Tagarielli
,
V. L.
,
2017
, “
Numerical Modelling of the Mechanical Response of a Sintered Titanium Foam
,”
Int. J. Solids Struct.
,
113
, pp.
241
254
.
38.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2000
.
Isotropic Constitutive Models for Metallic Foams
.
J. Mech. Phys. Solids
,
48
(
6
7
):
1253
1283
.
39.
Dassault Systemes
, abaqus Standard User's Manual, v6.12,
Simulia Corp
,
Rhode Island, USA
.
40.
Kanit
,
T.
,
Forest
,
S.
,
Galliet
,
I.
,
Mounoury
,
V.
, and
Jeulin
,
D.
,
2003
, “
Determination of the Size of the Representative Volume Element for Random Composites: Statistical and Numerical Approach
,”
Int. J. Solids Struct.
,
40
(
13–14
), pp.
3647
3679
.
41.
Ostoja-Starzewski
,
M.
,
2011
, “
Stochastic Finite Elements: Where Is the Physics
,”
Theor. Appl. Mech.
,
38
(
4
), pp.
379
396
.
42.
Kurukuri
,
S.
,
2005
, “
Homogenisation of Damaged Concrete Meso-Structures Using Representative Volume Elements—Implementation and Application to SLang
,” Master thesis,
Bauhaus-University
,
Weimar
.
43.
Kassem
,
G. A.
,
2010
, “
Micromechanical Material Models for Polymer Composites Through Advanced Numerical Simulation Techniques
,” Ph.D. thesis,
RWTH Aachen University,
Aachen, Germany
.
44.
Cheng
,
L.
,
Danas
,
K.
,
Constantinescu
,
A.
, and
Kondo
,
D.
,
2017
, “
A Homogenization Model for Porous Ductile Solids Under Cyclic Loads Comprising a Matrix With Isotropic and Linear Kinematic Hardening
,”
Int. J. Solids Struct.
,
121
, pp.
174
190
.
45.
Danas
,
K.
, and
Ponte Castaneda
,
P.
,
2012
,
Influence of the Lode Parameter and the Stress Triaxiality on the Failure of Elasto-Plastic Porous Materials
.
Int. J. Solids Struct.
,
49
(
11
12
):
1325
1342
.
46.
Kováčik
,
J.
,
1998
, “
The Tensile Behaviour of Porous Metals Made by Gasar Process
,”
Acta Mater.
,
46
(
15
), pp.
5413
5422
.
47.
Kováčik
,
J.
,
1999
, “
Correlation Between Young’s Modulus and Porosity in Porous Materials
,”
J. Mater. Sci. Lett.
,
18
, pp.
1007
1010
.
48.
Arezoo
,
S.
,
Tagarielli
,
V. L.
,
Siviour
,
C. R.
, and
Petrinic
,
N.
,
2013
, “
Compressive Deformation of Rohacell Foams: Effects of Strain Rate and Temperature
,”
Int. J. Impact Eng.
,
51
, pp.
50
57
.
49.
Zhang
,
E.
, and
Wang
,
B.
,
2005
, “
On the Compressive Behaviour of Sintered Porous Coppers With Low to Medium Porosities-Part I: Experimental Study
,”
Int. J. Mech. Sci.
,
47
, pp.
744
756
.
You do not currently have access to this content.