Abstract
Of the many valid configurations that a curved fold may assume, it is of particular interest to identify natural—or lowest energy—configurations that physical models will preferentially assume. We present normalized coordinate equations—equations that relate fold surface properties to their edge of regression—to simplify curved-fold relationships. An energy method based on these normalized coordinate equations is developed to identify natural configurations of general curved folds. While it has been noted that natural configurations have nearly planar creases for curved folds, we show that nonplanar behavior near the crease ends substantially reduces the energy of a fold.
Issue Section:
Research Papers
References
1.
Demaine
, E. D.
, and O’Rourke
, J.
, 2008
, Geometric Folding Algorithms: Linkages, Origami, Polyhedra
, Cambridge University Press
, Cambridge
.2.
Zhao
, Y.
, Kanamori
, Y.
, and Mitani
, J.
, 2018
, “Design and Motion Analysis of Axisymmetric 3d Origami With Generic Six-Crease Bases
,” Comput. Aided Geom. Des.
, 59
, pp. 86
–97
. 3.
Hanna
, B. H.
, Magleby
, S. P.
, Lang
, R. J.
, and Howell
, L. L.
, 2015
, “Force–Deflection Modeling for Generalized Origami Waterbomb-Base Mechanisms
,” ASME J. Appl. Mech.
, 82
(8
), p. 081001
. 4.
Lee
, T.-U.
, and Gattas
, J. M.
, 2016
, “Geometric Design and Construction of Structurally Stabilized Accordion Shelters
,” ASME J. Mech. Rob.
, 8
(3
), p. 031009
. 5.
Feng
, H.
, Ma
, J.
, Chen
, Y.
, and You
, Z.
, 2018
, “Twist of Tubular Mechanical Metamaterials Based on Waterbomb Origami
,” Sci. Rep.
, 8
(1
), p. 9522
. 6.
Chen
, Y.
, Peng
, R.
, and You
, Z.
, 2015
, “Origami of Thick Panels
,” Science
, 349
(6246
), pp. 396
–400
. 7.
Chen
, Z.
, Wu
, T.
, Nian
, G.
, Shan
, Y.
, Liang
, X.
, Jiang
, H.
, and Qu
, S.
, 2019
, “Ron Resch Origami Pattern Inspired Energy Absorption Structures
,” ASME J. Appl. Mech.
, 86
(1
), p. 011005
. 8.
Ma
, J.
, and You
, Z.
, 2014
, “Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern Part I: Geometry and Numerical Simulation
,” ASME J. Appl. Mech.
, 81
(1
), p. 011003
. 9.
Zhou
, C.
, Jiang
, L.
, Tian
, K.
, Bi
, X.
, and Wang
, B.
, 2017
, “Origami Crash Boxes Subjected to Dynamic Oblique Loading
,” ASME J. Appl. Mech.
, 84
(9
), p. 091006
. 10.
Zhou
, C.
, Ming
, S.
, Li
, T.
, Wang
, B.
, and Ren
, M.
, 2018
, “The Energy Absorption Behavior of Cruciforms Designed by Kirigami Approach
,” ASME J. Appl. Mech.
, 85
(12
), p. 121008
. 11.
Tang
, C.
, Bo
, P.
, Wallner
, J.
, and Pottmann
, H.
, 2016
, “Interactive Design of Developable Surfaces
,” ACM Trans. Graph.
, 35
(2
), p. 12
. 12.
Kilian
, M.
, Flöry
, S.
, Chen
, Z.
, Mitra
, N. J.
, Sheffer
, A.
, and Pottmann
, H.
, 2008
, “Curved Folding
,” ACM Trans. Graph.
, 27
(3
), p. 75
. 13.
Lee
, T.-U.
, You
, Z.
, and Gattas
, J. M.
, 2018
, “Elastica Surface Generation of Curved-Crease Origami
,” Int. J. Solids Struct.
136-137
, pp. 13
–27
. 14.
Fuchs
, D.
, and Tabachnikov
, S.
, 1999
, “More on Paperfolding
,” Am. Math. Mon.
, 106
(1
), pp. 27
–35
. 15.
Duncan
, J. P.
, and Duncan
, J.
, 1982
, “Folded Developables
,” Proc. R. Soc. Lond. Math. Phys. Sci.
, 383
(1784
), pp. 191
–205
. 16.
Struik
, D. J.
, 1961
, Lectures on Classical Differential Geometry
, Courier Dover Publications
, New York
.17.
Lang
, R.
, Nelson
, T.
, Magleby
, S.
, and Howell
, L.
, 2017
, “Kinematics and Discretization of Curved Fold Mechanisms
,” ASME
2017 IDETC/CIE, No. IDETC2017-59747, ASME. 18.
Aumann
, G.
, 2003
, “A Simple Algorithm for Designing Developable Bzier Surfaces
,” Comput. Aided Geom. Des.
, 20
(8
), pp. 601
–619
(in memory of Professor J. Hoschek). 19.
Weisstein
, E. W.
, 2002
, CRC Concise Encyclopedia of Mathematics
, CRC Press
, Boca Raton, FL
.20.
Mitani
, J.
, and Igarashi
, T.
, 2011
, “Interactive Design of Planar Curved Folding by Reflection
,” Proceedings of PG 2011
, Kaohsiung, Taiwan
, Sept. 21–23
.21.
Demaine
, E. D.
, Demaine
, M. L.
, Huffman
, D. A.
, Koschitz
, D.
, and Tachi
, T.
, 2014
, “Designing Curved-Crease Tessellations of Lenses: Qualitative Properties of Rulings
,” 6th International Meeting on Origami in Science, Mathematics and Education (OSME 2014)
, Tokyo
, Aug
., pp. 10
–13
.22.
Dias
, M. A.
, 2012
, “Swelling and Folding as Mechanisms of 3d Shape Formation in Thin Elastic Sheets
,” PhD thesis, University of Massachusetts Amherst
, Amherst, MA
.23.
Nelson
, T. G.
, Lang
, R. J.
, Pehrson
, N. A.
, Magleby
, S. P.
, and Howell
, L. L.
, 2016
, “Facilitating Deployable Mechanisms and Structures Via Developable Lamina Emergent Arrays
,” ASME J. Mech. Rob.
, 8
(3
), p. 031006
. 24.
Abbena
, E.
, Salamon
, S.
, and Gray
, A.
, 2006
, Modern Differential Geometry of Curves and Surfaces With Mathematica
, CRC Press
, Boca Raton, FL
.25.
Verbeek
, P. W.
, and Van Vliet
, L. J.
, 1993
, “Curvature and Bending Energy in Digitized 2D and 3D Images
,” 8th Scandinavian Conference on Image Analysis
, Tromso, Norway
, May 25
, pp. 1403
–1410
.26.
Wang
, W.
, and Qui
, X.
, 2017
, “Coupling of Creases and Shells
,” ASME J. Appl. Mech.
, 85
(1
), p. 011009
. 27.
Lee
, T. U.
, You
, Z.
, and Gattas
, J. M.
, 2018
, “Curved-Crease Origami With Multiple States
,” Origami 7: Seventh International Meeting of Origami Science, Mathematics, and Education
, Oxford
, Sept. 5–7
.28.
Woodruff
, S. R.
, and Filipov
, E. T.
, 2018
, “Structural Analysis of Curved Folded Deployables
,” ASCE Earth and Space Conference
, Cleveland, OH
, Apr. 9–12
, p. 793
.29.
Seffen
, K. A.
, and Guest
, S. D.
, 2011
, “Prestressed Morphing Bistable and Neutrally Stable Shells
,” ASME J. Appl. Mech.
, 78
(1
), p. 011002
. 30.
Nelson
, T. G.
, Zimmerman
, T. K.
, Magleby
, S. P.
, Lang
, R. J.
, and Howell
, L. L.
, 2019
, “Developable Mechanisms on Developable Surfaces
,” Sci. Rob.
, 4
(27
), p. 5171
. 31.
DeFigueiredo
, B.
, Pehrson
, N. A.
, Tolman
, K.
, Crampton
, E.
, Magleby
, S. P.
, and Howell
, L. L.
, 2019
, “Origami-Based Design of Conceal-and-Reveal Systems
,” ASME J. Mech. Rob.
, 11
(2
), p. 020904
. 32.
Cai
, J.
, Qian
, Z.
, Jiang
, C.
, Feng
, J.
, and Xu
, Y.
, 2016
, “Mobility and Kinematic Analysis of Foldable Plate Structures Based on Rigid Origami
,” ASME J. Mech. Rob.
, 8
(6
), p. 064502
. 33.
Cai
, J.
, Zhang
, Q.
, Feng
, J.
, and Xu
, Y.
, 2018
, “Modeling and Kinematic Path Selection of Retractable Kirigami Roof Structures
,” Comput. Aided Civil Infrastruct. Eng.
, 34
(4
), pp. 352
–363
. 34.
Jianguo
, C.
, Yangqing
, L.
, Ruijun
, M.
, Jian
, F.
, and Ya
, Z.
, 2017
, “Nonrigidly Foldability Analysis of Kresling Cylindrical Origami
,” ASME J. Mech. Rob.
, 9
(4
), p. 041018
. Copyright © 2019 by ASME
You do not currently have access to this content.